Six Steps to Optimization, Step 4 – Turn Off Your Compressed Air When Not in Use

Step 4 of the Six Steps To Optimizing Your Compressed Air System is ‘Turn off the compressed air when it isn’t in use.’  Click on the link above for a good summary of the all the steps.

6 Steps from Catalog

Two basic methods to set up a compressed air operation for turning off is the ball valve and the solenoid valve. Of the two, the simplest is the ball valve. It is a quarter turn, manually operated valve that stops the flow of the compressed air when the handle is rotated 90°. It is best for operations where the compressed air is needed for a long duration, and shut off is infrequent, such as at the end of the shift.

manual_valves (2)
Manual Ball Valves, from 1/4 NPT to 1-1/4 NPT

The solenoid valve offers more flexibility. A solenoid valve is an electro-mechanical valve that uses electric current to produce a magnetic field which moves a mechanism to control the flow of air. A solenoid can be wired to simple push button station, for turning the air flow on and off – similar to the manual valve in that relies on a person to remember to turn the air off when not needed.

wa_solvalv
A Wide Array of Solenoid Valve Offerings for Various Flows and Voltage Requirements

Another way to use a solenoid valve is to wire it in conjunction with a PLC or machine control system. Through simple programming, the solenoid can be set to turn on/off whenever certain parameters are met. An example would be to energize the solenoid to supply an air knife when a conveyor is running to blow off parts when they pass under. When the conveyor is stopped, the solenoid would close and the air would stop blowing.

The EXAIR EFC (Electronic Flow Control) is a stand alone solenoid control system. The EFC combines a photoelectric sensor with a timer control that turns the air on and off based on the presence (or lack of presence) of an object in front of the sensor. There are 8 programmable on/off modes for different process requirements. The use of the EFC provides the highest level of compressed air usage control. The air is turned on only when an object is present and turned off when the object has passed by.

efcapp
EFC Used To Control Bin Blow Off Operation

By turning off the air when not needed, whether by a manual ball valve, a solenoid valve integrated into the PLC machine control or the EXAIR EFC, compressed air usage will be minimized and operation costs reduced.

If you have questions about the EFC, solenoid valves, ball valves or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Monitor Your Compressed Air System With EXAIR’s Digital Flowmeters

A topic that we’ve talked about here on the EXAIR blog discusses the costs of compressed air and how to use it more efficiently. How can you determine the costs of your compressed air? The first step you’ll need to take is to quantify the flow. In order to do that you’ll need a measurement tool such as the EXAIR Digital Flowmeter.

dfm_sizes
EXAIR’s family of Digital Flowmeters

The Digital Flowmeter is available from stock for use on Schedule 40 pipe with sizes ranging from ½”-4” I.D. Sizes up to 6” for Schedule 40 and ¾”-4” for copper pipe are also available. With a digital readout display, it’s easy to accurately monitor your compressed air usage throughout the facility. Creating a baseline of your usage will allow you to understand your compressed air demand, identify costly leaks, and replace inefficient air products.

The Digital Flowmeter installs in minutes with help from a drill guide and locating fixture to assist in mounting the Digital Flowmeter to the pipe. Two flow sensing probes are inserted into the drilled holes in the pipe. The meter then seals to the pipe once tightened. There is no need to cut, weld, or do any calibration once it is installed. With blocking rings also available, installation can be permanent or temporary.

The newest addition to this product line is the Digital Flowmeter with wireless capability. Using a ZigBee® mesh network protocol, data is transmitted to an Ethernet connected gateway. This allows you to mount the Digital Flowmeter in areas that you may not be able to easily access and wirelessly monitor and graph the usage with the EXAIR Logger software. Take a peek at this video blog for a demonstration of the use of a wireless Digital Flowmeter software to compare an open pipe to an engineered Air Nozzle.

wirelessdfmpr2_1670x574

In addition to communicating wirelessly with the gateway, the Digital Flowmeters can “piggyback” off of each other to extend their range. Each meter has a range of 100’. Using multiple Digital Flowmeters within the same ZigBee® mesh network, data can be passed from meter to meter to extend the distance over which the meters can operate. These can be installed on each major leg of your compressed air system to continuously monitor usage throughout the facility.

If you’d rather go with a hard-wired data collection method, the Digital Flowmeter is also available with a USB Data Logger. Simply remove the Data Logger from the Digital Flowmeter and connect it to the USB port of your computer. The data can then be viewed directly in the accompanying software or exported into Microsoft Excel.

dataloggerPRce_559wide
Digital Flowmeter w/ USB Data Logger installed

If you’d like to get a clear view of your compressed air usage, give us a call. An Application Engineer will be happy to work with you and get the proper Digital Flowmeters installed in your facility!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Estimating the Cost of Compressed Air Systems Leaks

Leaks in a compressed air system can waste thousands of dollars of electricity per year. In fact, in many plants, the leakage can account for up to 30% of the total operational cost of the compressor. Some of the most common areas where you might find a leak would be at connection joints like valves, unions, couplings, fittings, etc. This not only wastes energy but it can also cause the compressed air system to lose pressure which reduces the end use product’s performance, like an air operated actuator being unable to close a valve, for instance.

One way to estimate how much leakage a system has is to turn off all of the point-of-use devices / pneumatic tools, then start the compressor and record the average time it takes for the compressor to cycle on and off. The total percentage of leakage can be calculated as follows:

Percentage = [(T x 100) / (T + t)]

T = on time in minutes
t = off time in minutes

The percentage of compressor capacity that is lost should be under 10% for a system that is properly maintained.

Another method to calculate the amount of leakage in a system is by using a downstream pressure gauge from a receiver tank. You would need to know the total volume in the system at this point though to accurately estimate the leakage. As the compressor starts to cycle on,  you want to allow the system to reach the nominal operating pressure for the process and record the length of time it takes for the pressure to drop to a lower level. As stated above, any leakage more than 10% shows that improvements could be made in the system.

Formula:

(V x (P1 – P2) / T x 14.7) x 1.25

V= Volumetric Flow (CFM)
P1 = Operating Pressure (PSIG)
P2 =  Lower Pressure (PSIG)
T = Time (minutes)
14.7 = Atmospheric Pressure
1.25 = correction factor to figure the amount of leakage as the pressure drops in the system

Now that we’ve covered how to estimate the amount of leakage there might be in a system, we can now look at the cost of a leak. For this example, we will consider a leak point to be the equivalent to a 1/16″ diameter hole.

A 1/16″ diameter hole is going to flow close to 3.8 SCFM @ 80 PSIG supply pressure. An industrial sized air compressor uses about 1 horsepower of energy to make roughly 4 SCFM of compressed air. Many plants know their actual energy costs but if not, a reasonable average to use is $0.25/1,000 SCF generated.

Calculation :

3.8 SCFM (consumed) x 60 minutes x $ 0.25 divided by 1,000 SCF

= $ 0.06 per hour
= $ 0.48 per 8 hour work shift
= $ 2.40 per 5-day work week
= $ 124.80 per year (based on 52 weeks)

As you can see, that’s a lot of money and energy being lost to just one small leak. More than likely, this wouldn’t be the only leak in the system so it wouldn’t take long for the cost to quickly add up for several leaks of this size.

If you’d like to discuss how EXAIR products can help identify and locate costly leaks in your compressed air system, please contact one of our application engineers at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

 

 

 

EXAIR Accessories – We’ve Got you Covered

When you work with us here at EXAIR, we strive to have all the ancillary items that you might need to make your installation a success, without having to find components at the last minute or perhaps using the wrong sized components. Each specific product line such as Super Air Knives or Line Vac air operated conveyors have specific accessories such as mounting brackets or plumbing kits which EXAIR has made to simplify the installation of those particular products. We also carry generalized accessories which work across all of the product lines so you do not have to use multiple vendors or purchase orders.

Silencing Mufflers – Per OSHA Standard 1910.95(a), a worker must not be exposed to sounds levels above 90 dBA for any eight hour shift of a 40 hour work week.  EXAIR offers several types of mufflers including – Reclassifying, Sintered Bronze, Straight-Through and Heavy Duty.  For reducing the noise associated with an EXAIR E-Vac Generator, Vortex Tube, Cabinet Cooler System, or the exhaust air from cylinders, valves and other air powered equipment, we’ve got a muffler that will help to keep the noise level at an acceptable level.

Mufflers

Solenoid and Manual Valves – The easiest way to reduce compressed air usage and save on operating expense is to turn off the compressed air to a device when it isn’t needed. EXAIR carries a wide assortment of solenoid valves, with offerings in the NEMA 4/4X classification, and supply voltages of 24VDC, 120VAC, and 240VAC.  We also have manual ball valves from 1/4 NPT to 1-1/4 NPT and a foot operated valve, with 1/4 NPT connections.

Valves

Swivel Fittings, Stay Set Hoses and Magnetic Bases – To provide a great degree of flexibility for positioning an EXAIR Super Air Nozzle, Air Jets or Air Amplifiers, EXAIR offers several items.  The Swivel Fittings have 25 degree of movement from the center axis, providing a total of 50 degree of adjustability.  The position is locked in place and holds until adjustment is needed. For applications where frequent re-positioning of the air device is required, the Stay Set Hoses are ideal.  Simply mount the hose close to the application, bend it to the shape preferred, and because the hose has “memory”, it will not creep or bend.  Lastly, the Magnetic Bases are another option for flexible, movable installations.  The base has a on/off valve, and a powerful magnet to hold in any vertical or horizontal mounting arrangement.

Swivels, StaySets,MagBases2

 

Hoses – EXAIR can provide hoses for your application.  For the Line Vac air operated conveyor applications, we offer conveyance hose – a durable, clear reinforced PVC hose, in diameters of 3/8″ to 3″ ID, and lengths up to 50′. On the compressed air side, we can provide 12′ Coiled Hoses with 1/8, 1/4, and 3/8 NPT connections, and also 3/8″ and 1/2″ ID hose in lengths to 50′.

Hoses

Filter Separators, Oil Removal Filters and Pressure Regulators – Perhaps the most important accessories for use on a compressed air device are filters and regulators. Filtering the compressed air of dirt, debris, moisture and oil will help to prevent build up inside the EXAIR products, leading to longer service life, and less time spent cleaning, while providing optimum performance. Regulating the air pressure allows for tuning of the performance, using the proper amount of compressed air to obtain satisfactory results.

Filter and Regualtors

If you have questions regarding accessories for use with any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB