OSHA Safety, Efficiency, and Flexibility from Engineered Compressed Air Nozzles

Throughout my years here at EXAIR as well as my years in the metal cutting industry, one of the most common quick fixes I see in production environments for compressed air blowoffs in a process is an open copper pipe that is contorted into a position, pinched at the end, and more often than not kinked from repositioning. I call this a quick fix because it does blow air, more often than not it will get production up and running, but it does not meet or exceed OSHA standards for safety and is an inefficient use of compressed air. [OSHA Standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a)]

EXAIR Super Air Nozzles that are easy replacements for 1/8″ and 1/4″ Copper pipe.

The first engineered solution I could offer to prevent any costly OSHA fines and to lower the ambient noise level caused by these blowoffs is to implement an EXAIR Engineered Air Nozzle. We offer a wide variety of nozzles ranging from a 4mm thread up to a 1-1/4″ NPT thread. With this wide range comes a wide variety of forces and flows as well.

Today, I would like to focus on the common sizes of copper blowoffs which are 1/8″ and 1/4″. To simply adapt a nozzle to copper line a compression fitting can be easily sourced, often from EXAIR, and convert the copper tubing in place to an NPT threaded outlet for easy installation of an EXAIR nozzle. More often than not a compression fitting is how the copper tubing is tied into the machine’s compressed air system.

We have a total of 37 engineered air nozzles from stock that will easily fit a compression fitting which goes to a 1/8″ NPT or 1/4″ NPT thread. Several of these are also adjustable through a gap adjustment or a patented shim adjustment to vary the force and flow out of the nozzle from a forceful blast to a gentle breeze in order to me your application needs. What if you want to eliminate the copper line and compressions fittings?

EXAIR offers a replacement option for the ever-common copper tube that is more robust and does not require a tool to be properly repositioned. We currently offer twenty-four different models of our Stay Set Hoses that can be easily connected to any of the nozzles mentioned above. The lengths that are available are 6″ (152mm), 12″ (305mm), 18″ (457mm), 24″ (610mm), 30″ (762mm) and 36″ (914mm).

These lengths are available with two separate connection options. 1/4″ MNPT x 1/4″ MNPT or 1/4″ MNPT x 1/8″ FNPT. The Stay Set Hoses can easily be bent by hand into position for a precise placement of the air pattern from the engineered nozzle attached to it. This permits operators a tool free adjustment for fast and reliable location to keep production up and running. They can also be paired with Magnetic Bases.

EXAIR Magnetic Bases are available in single outlet or dual outlet configurations. Both include a 100 lb. pull magnet that will hold tight to any ferrous metal surface for secure mounting, as well as a quick 1/4 turn miniature valve on each outlet. This permits independent customization of the force our of each output for the dual outlet mag base. Each magnetic base offers a 1/4″ FNPT inlet port and outlet port. We offer these with any of combination of the Stay Set Hoses mentioned above as well as any of the Super Air Nozzles mentioned above.

Mag Bases come with one or two outlets. Stay Set Hoses come in lengths from 6″ to 36″.

The Super Air Nozzles, Stay Set Hoses, and Magnetic Bases can be easily combined before they ship to your facility to make a complete blowoff station that is easily installed and adjusted to fit any of the needs your process may have for a point of use blowoff. If you want help determining how much compressed air you would save by replacing the open pipe blowoffs with an engineered solution like a Stay Set Magnetic Base Blowoff System please contact myself or any Application Engineer here at EXAIR.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Engineered Compressed Air Nozzles and Utility Rebates

When EXAIR started to manufacture compressed air products, we created a culture in making high quality products that are safe, effective, and efficient.  Being leaders in this industry, we created a program, the Efficiency Lab, to compare blow-off devices with EXAIR products in noise levels, flow requirements, and force measurements.  With calibrated test equipment, we compare the data in a qualified report to share with our customers.  This information can be helpful to determine the total amount of air savings and safety improvements that EXAIR products can offer.

Flat SANs 1in
Zinc Aluminum models are suitable for general purpose blow off (left) and 316SS models are specified for food/pharma and high heat applications.

In conjunction with the Efficiency Lab, we created a Cost Savings Calculator.  It is a quick way to view payback periods and annual savings when using EXAIR products.  As an example, I used a 1” Flat Super Air Nozzle, model 1126, and compared it to a 1/8” open pipe.  (The reason behind the comparison is that the model 1126 can screw onto the end of the 1/8” NPT pipe.)  With an operation of 24 hours/day for 250 days a year, the amount of air used by an 1/8” open pipe is near 70 SCFM (1,981 SLPM) at 80 PSIG (5.5 Bar).  The model 1126 has an air consumption of 10.5 SCFM (297 SLPM) at 80 PSIG (5.5 Bar).  By putting the information in the Cost Savings Calculator, it determined that the ROI was in 2.1 days.  The annual savings was $5,355 USD per year.  Imagine if you replaced ten blow-off spots in your facility, the amount of money that could be saved.  Here is the worksheet below:

flat 1

The people that started to notice the savings were the utility companies that make electricity.  Depending on your location, electrical suppliers initiated a rebate program to use engineered nozzles in your facility.  Similar to other energy saving rebates, like LED light bulbs and high efficiency furnaces, the electrical providers notice a big savings when using EXAIR products.  If you qualify, the total cost to purchase and implement the EXAIR Super Air Nozzles are reduced.(Even if a rebate program has not been implemented in your area, the idea of saving energy and compressed air makes it very profitable and environmentally sound in changing over to EXAIR products).

To see if your utility offers rebates on compressed air optimizations, go to the DSIRE database. This database is easy to search and informative.

For Example, here in Ohio Duke Energy has a Prescriptive Incentive Program for its customers. The Prescriptive Incentive Program makes it easy for Duke Energy customers to receive an incentive for their natural gas and electric energy efficiency projects. Prescriptive Incentives are energy efficient measures paid per-unit, reimbursing the customer up to the total cost (including materials and labor) after the measures have been installed. See the image below for their incentives for using Engineered Nozzles;

capture.jpg
Ohio Duke Energy Prescriptive Incentive Program

https://www.duke-energy.com/business/products/smartsaver/industrial-equipment

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process and save you money, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

 

Six Steps to Optimization, Step 4 – Turn Off Your Compressed Air When Not in Use

Step 4 of the Six Steps To Optimizing Your Compressed Air System is ‘Turn off the compressed air when it isn’t in use.’  Click on the link above for a good summary of the all the steps.

6 Steps from Catalog

Two basic methods to set up a compressed air operation for turning off is the ball valve and the solenoid valve. Of the two, the simplest is the ball valve. It is a quarter turn, manually operated valve that stops the flow of the compressed air when the handle is rotated 90°. It is best for operations where the compressed air is needed for a long duration, and shut off is infrequent, such as at the end of the shift.

manual_valves (2)
Manual Ball Valves, from 1/4 NPT to 1-1/4 NPT

The solenoid valve offers more flexibility. A solenoid valve is an electro-mechanical valve that uses electric current to produce a magnetic field which moves a mechanism to control the flow of air. A solenoid can be wired to simple push button station, for turning the air flow on and off – similar to the manual valve in that relies on a person to remember to turn the air off when not needed.

wa_solvalv
A Wide Array of Solenoid Valve Offerings for Various Flows and Voltage Requirements

Another way to use a solenoid valve is to wire it in conjunction with a PLC or machine control system. Through simple programming, the solenoid can be set to turn on/off whenever certain parameters are met. An example would be to energize the solenoid to supply an air knife when a conveyor is running to blow off parts when they pass under. When the conveyor is stopped, the solenoid would close and the air would stop blowing.

The EXAIR EFC (Electronic Flow Control) is a stand alone solenoid control system. The EFC combines a photoelectric sensor with a timer control that turns the air on and off based on the presence (or lack of presence) of an object in front of the sensor. There are 8 programmable on/off modes for different process requirements. The use of the EFC provides the highest level of compressed air usage control. The air is turned on only when an object is present and turned off when the object has passed by.

efcapp
EFC Used To Control Bin Blow Off Operation

By turning off the air when not needed, whether by a manual ball valve, a solenoid valve integrated into the PLC machine control or the EXAIR EFC, compressed air usage will be minimized and operation costs reduced.

If you have questions about the EFC, solenoid valves, ball valves or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Video Blog: EXAIR’s Efficiency Lab

If you’d like to know how efficient (or not,) quiet (or not,) and effective (or not) your current compressed air devices are, the EXAIR Efficiency Lab can help.  For more details, we hope you’ll enjoy this short video.

If you’d like to talk about getting the most out of your compressed air system, we’d love to hear from you.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook