Basics of Compressors

Single Stage Portable Air Compressor

What is an air compressor?  This may seem like a simple question, but it is the heartbeat for most industries.  So, let’s dive into the requirements, myths, and types of air compressors that are commonly used.  Like the name implies, air compressors are designed to compress air.  Unlike liquids, air is a compressible gas, which means that it can be “squished” into a smaller volume by pressure.  With this stored energy, it can do work for pneumatic systems.

There are two main types of air compressors, positive displacement and dynamic.  The core component of most air compressors is an electric motor that spins a shaft.  Positive displacement uses the energy from the motor and the shaft to change volume in an area, like a piston in a reciprocating air compressor or like rotors in a rotary air compressor.  The dynamic types use the energy from the motor and the shaft to create a velocity with an impeller like centrifugal air compressors.  This velocity converts to a rise in pressure.

How do they work?  Most air compressors are driven by an electric or gas motor.  The motor spins a shaft to push a piston, turn a rotor, or spin a vane.  At the beginning of the air compressor, we have the intake where a low pressure is generated from the displacement to bring in the surrounding ambient air.  Once trapped, Boyle’s law states that when the volume decreases, the pressure increases.  For the dynamic type, the velocity and design will increase the air pressure.  The higher pressure will then move to a tank to be stored for pneumatic energy.  The amount of power required is dependent on the amount of air that needs to be compressed. 

Compressed air is a clean utility that is used in many ways, and it is much safer than electrical or hydraulic systems.  But most people think that compressed air is free, and it is most certainly not.  Because of the expense, compressed air is considered to be a fourth utility in manufacturing plants.  For an electrical motor to reduce a volume of air by compressing it, it takes roughly 1 horsepower (746 watts) of power to compress 4 cubic feet (113L) of air every minute to 125 PSI (8.5 bar).  With almost every manufacturing plant in the world utilizing air compressors much larger than 1 horsepower, the amount of energy needed to compress a large volume of air is extraordinary.

Let’s determine the energy cost to operate an air compressor to make compressed air by Equation 1:

Equation 1:

Cost = hp * 0.746 * hours * rate / (motor efficiency)

where:

Cost – US$

hp – horsepower of motor

0.746 – conversion KW/hp

hours – running time

rate – cost for electricity, US$/KWh

motor efficiency – average for an electric motor is 95%.

As an example, a manufacturing plant operates a 100 HP air compressor in their facility.  The cycle time for the air compressor is roughly 60%.  To calculate the hours of running time per year, I used 250 days/year at 16 hours/day for two shifts.  So operating hours equal 250 * 16 * 0.60 = 2,400 hours per year.  The electrical rate at this facility is $0.10/KWh.  With these factors, the annual cost for operating the air compressor can be calculated by Equation 1:

Cost = 100hp * 0.746 KW/hp * 2,400hr * $0.10/KWh / 0.95 = $18,846 per year in just electrical costs.

So, what is an air compressor?  The answer is a pneumatic device that converts power (using an electric motor, diesel or gasoline engine, etc.) into potential energy stored as pressurized air.  Efficiency in using compressed air is very important.  EXAIR has been manufacturing Intelligent Compressed Air Products since 1983.  We are able to save you money by reducing the amount of compressed air you use.  If you need alternative ways to save money when you are using your air compressor, an Application Engineer at EXAIR will be happy to help you.  We even have a Cost Savings Calculator to find the annual savings and payback period; and you will be amazed at how much money can be saved. 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Photo: Technical Illustration of a portable single-stage air compressor by Brain S. Elliot.  Creative Commons CC BY-SA 4.0

EXAIR Products Qualify for Energy Rebates

The use of compressed air can be found in almost any industry and is often referred to as a “fourth utility” next to water, gas and electric. The generation of compressed air accounts for approximately 1/3 of all energy costs in an industrial facility, in many cases, it’s the largest energy user in an industrial plant. With an average cost of $ 0.25 per every 1,000 SCF used, compressed air can be expensive to produce so it is very important to use this utility as efficiently as possible.

Many utility companies recognize the benefit of using engineered products to reduce compressed air usage, like the ones manufactured by EXAIR, and offers rebate incentives for making a switch. Duke Energy, who supplies power to sections of North Carolina, South Carolina, Ohio, Kentucky, Indiana and Florida offers several “Smart $aver Rebates” that focus around the generation and use of compressed air. (State and Location Dependent)

Duke Energy’s Smart Saver Program

However the best place to look at your states available programs is the DSIRE database. DSIRE is the most comprehensive source of information on incentives and policies that support renewable energy and energy efficiency in the United States. Established in 1995, DSIRE is operated by the N.C. Clean Energy Technology Center at N.C. State University. Follow the link above to read about the history of DSIRE, the partners on the project, and the research staff that maintains the policy and incentive data in DSIRE.

The Process is pretty easy! Visit https://www.dsireusa.org/ and type in your Zip Code!

After you get your results, search some key words, Like “Industrial” “Energy” “Commercial” “Energy Efficiency” “Compressed air”

Here you can see the two Programs that came up for 46077, you can then click the program name and it will take you a information page with the programs website and information!

Here at EXAIR, much of our focus is to improve the overall efficiency of industrial compressed air operating processes and point of use compressed air operated products. If you’d like to contact one of our application engineers, we can help recommend the proper engineered solution to not only save on your compressed air usage but also assist with possible energy rebates available in your area.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Money Seed Creative Commons Images from Pictures of Money, Attribution 2.0 Generic (CC BY 2.0)

How to Calculate the Cost of Leaks

Leaks are a hidden nuisance in a compressed air system that can cause thousands of dollars in electricity per year. These leaks on average can account for up to 30% of the operation cost of a compressed air system. A leak will usually occur at connection joints, unions, valves, and fittings. This not only is a huge waste of energy but it can also cause a system to lose pressure along with lowering the life span of the compressor since it will have to run more often to make up for the loss of air from the leak.

There are two common ways to calculate how much compressed air a system is losing due to leaks. The first way is to turn off all of the point of use compressed air devices; once this has been complete turn on the air compressor and record the average time that it takes the compressor to cycle on and off. With the average cycle time you can calculate out the total percentage of leakage using the following formula.

The second method is to calculate out the percentage lost using a pressure gauge downstream from a receiver tank. This method requires one to know the total volume in the system to accurately estimate the leakage from the system. Once the compressor turns on wait until the system reaches the normal operating pressure for the process and record how long it takes to drop to a lower operating pressure of your choosing. Once this has been completed you can use the following formula to calculate out the total percentage of leakage.

The total percentage of the compressor that is lost should be under 10% if the system is properly maintained.

Once the total percentage of leakage has been calculated you can start to look at the cost of a single leak assuming that the leak is equivalent to a 1/16” diameter hole. This means that at 80 psig the leak is going to expel 3.8 SCFM. The average industrial air compressor can produce 4 SCFM using 1 horsepower of energy. Adding in the average energy cost of $0.25 per 1000 SCF generated one can calculate out the price per hour the leak is costing using the following calculation.

If you base the cost per year for a typical 8000 hr. of operating time per year you are looking at $480 per year for one 1/16” hole leak. As you can see the more leaks in the system the more costly it gets. If you know how much SCFM your system is consuming in leaks then that value can be plugged into the equitation instead of the assumed 3.8 SCFM.

If you’d like to discuss how EXAIR products can help identify and locate costly leaks in your compressed air system, please contact one of our application engineers at 800-903-9247.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Six Steps to Optimization, Step 4 – Turn Off Your Compressed Air When Not in Use

Step 4 of the Six Steps To Optimizing Your Compressed Air System is ‘Turn off the compressed air when it isn’t in use.’  Click on the link above for a good summary of the all the steps.

6 Steps from Catalog

Two basic methods to set up a compressed air operation for turning off is the ball valve and the solenoid valve. Of the two, the simplest is the ball valve. It is a quarter turn, manually operated valve that stops the flow of the compressed air when the handle is rotated 90°. It is best for operations where the compressed air is needed for a long duration, and shut off is infrequent, such as at the end of the shift.

manual_valves (2)
Manual Ball Valves, from 1/4 NPT to 1-1/4 NPT

The solenoid valve offers more flexibility. A solenoid valve is an electro-mechanical valve that uses electric current to produce a magnetic field which moves a mechanism to control the flow of air. A solenoid can be wired to simple push button station, for turning the air flow on and off – similar to the manual valve in that relies on a person to remember to turn the air off when not needed.

wa_solvalv
A Wide Array of Solenoid Valve Offerings for Various Flows and Voltage Requirements

Another way to use a solenoid valve is to wire it in conjunction with a PLC or machine control system. Through simple programming, the solenoid can be set to turn on/off whenever certain parameters are met. An example would be to energize the solenoid to supply an air knife when a conveyor is running to blow off parts when they pass under. When the conveyor is stopped, the solenoid would close and the air would stop blowing.

The EXAIR EFC (Electronic Flow Control) is a stand alone solenoid control system. The EFC combines a photoelectric sensor with a timer control that turns the air on and off based on the presence (or lack of presence) of an object in front of the sensor. There are 8 programmable on/off modes for different process requirements. The use of the EFC provides the highest level of compressed air usage control. The air is turned on only when an object is present and turned off when the object has passed by.

efcapp
EFC Used To Control Bin Blow Off Operation

By turning off the air when not needed, whether by a manual ball valve, a solenoid valve integrated into the PLC machine control or the EXAIR EFC, compressed air usage will be minimized and operation costs reduced.

If you have questions about the EFC, solenoid valves, ball valves or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB