Six Steps to Compressed Air Optimization: Step 2 – Find and Fix Leaks.

Since air compressors use a lot of electricity to make compressed air, it is important to use the compressed air as efficiently as possible.  The compressed air system is considered to be the “forth” utility behind gas, water, and electricity.  It is necessary for pneumatic systems, but it is the least efficient of the utilities.  For every $1.00 that is put into making compressed air, you only get roughly 5¢ of work from it.  EXAIR has six simple steps to optimize your compressed air system.  Following these steps will help you to cut electrical costs, reduce overhead, and improve your bottom line.  In this blog, I will cover the second step – find and fix leaks.

One of the largest problems affecting compressed air systems is leaks.  That quiet little hissing sound from the pipe lines is costing your company much money.  A study was conducted by a university to determine the percentage of air leaks in a typical manufacturing plant.  In a poorly maintained system, they found on average that 30% of the compressor capacity is lost through air leaks.  For a 100 hp compressor, you are losing 30 hp into the ambient air.  To put a dollar value on it, a leak that you cannot physically hear can cost you as much as $130/year.  That is just for one inaudible leak in hundreds of feet of compressed air lines.  For the leaks that you can hear, you can tell by the chart below (**Note 1) the amount of money that can be wasted by the size of the hole.  Unlike a hydraulic system, compressed air is clean; so, leaks will not appear at the source.  You have to locate them by some other means.

Most leaks occur where you have threaded fittings, connections, hoses, and pneumatic components like valves, regulators, and drains.  The Optimization product line from EXAIR are designed to help improve your compressed air system, and the most effective way is to eliminate leaks.  The Ultrasonic Leak Detectors can find the air leaks, and the Digital Flowmeters can monitor your system for air leaks.  With both of these products included in your leak preventative program, you will be able to keep your compressed air system running optimally and reduce the “hidden” cost of leaks.

Ultrasonic Leak Detector

EXAIR Ultrasonic Leak Detector:

When a leak occurs, it emits an ultrasonic noise caused by turbulence from the gas escaping.  This ultrasonic noise can be at a frequency above the audible level for human hearing.  The EXAIR Ultrasonic Leak Detector can pick up these frequencies and make the leaks audible.  With three sensitivity ranges and LED display, you can find very minute leaks.  It comes with two attachments; the parabola to locate leaks up to 20 feet away, and the tube attachment to define the exact location in the pipe line.  Once you find a leak, it can be marked for fixing.

EXAIR’s Digital Flowmeter w/ USB Data Logger

EXAIR Digital Flowmeter:

With the Digital Flowmeters, you can continuously monitor for waste.  Air leaks can occur at any time within any section of your pneumatic area.  You can do systematic checks by isolating sections with the Digital Flowmeter and watch for a flow reading.  Another way to monitor your system would be to compare the results over time.  With the Digital Flowmeters, we have a couple of options for recording the air flow data.  We have the USB Datalogger for setting certain time increments to record the air flows.  Once the information is recorded, you can connect the USB to your computer, and with the downloadable software, you can view the information and export it into an Excel spread sheet.  We also offer a wireless capability option with the Digital Flowmeters.  You can have multiple flow meters that can communicate with your computer to continuously log and record the flow information.  Once the flow information starts trending upward for the same process, then you can use the Ultrasonic Leak Detector to find the leak.  It can also give you a preventative measure if a pneumatic system is starting to fail.

Compressed air leaks will rob you in performance, compressor life, and electrical cost.  It is important to have a leak preventative program to check for leaks periodically as they can happen at any time.  The EXAIR Ultrasonic Leak Detector and the Digital Flowmeters will help you accomplish this and optimize your compressed air system.  Once you find and fix all your leaks, you can then focus on improving the efficiency of your blow-off devices with EXAIR products and save yourself even more money.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

**Note 1: Chart was published by Compressed Air Challenge in April 1998 – Rev. 0

Intermediate Storage Tanks & How To Size Them

When evaluating processes that utilize compressed air and adhering to the Six Steps to Compressed Air Optimization, intermediate storage proves to be a critical role coming in at step number five. Intermediate storage tanks may already be in place within your facility and often times can be implemented as modifications to aid existing lines that are struggling to maintain proper availability of compressed air to keep the line at peak performance.

EXAIR Receiver Tank in 60 Gallon Capacity

When determining whether or not a production line or point of use compressed air operation would benefit from a receiver tank/intermediate storage we would want to evaluate whether the demand for compressed air is intermittent.  Think of a receiver tank as a capacitor in an electrical circuit or a surge tank in a water piping system.  These both store up energy or water respectively to deliver to during a short high demand period then slowly charge back up from the main system and prepare for the next high demand.   If you look from the supply point it will see a very flattened demand curve, if you look from the application side it still shows a wave of peak use to no use.

Intermittent Applications are prime for rapid on/off of compressed air.

One of the key factors in intermediate storage of compressed air is to appropriately size the tank for the supply side of the system as well as the demand of the application.  The good news is there are equations for this.  To determine the capacity, use the equation shown below which is slightly different from sizing your main compressed air storage tank.  The formulate shown below is an example.

Where:

V – Volume of receiver tank (ft3 / cubic feet)

T – Time interval (minutes)

C – Air demand for system (cubic feet per minute)

Cap – Supply value of inlet pipe (cubic feet per minute)

Pa – Absolute atmospheric pressure (PSIA)

P1 – Header Pressure (PSIG)

P2 – Regulated Pressure (PSIG)

One of the main factors when sizing point of use intermediate storage is, they are being supplied air by smaller branch lines which cannot carry large capacities of air.  That limits your Cap value. The only way to decrease the V solution is to increase your Cap. The other key point is to ensure that all restrictions feeding into the tank and from the tank to your point of use are minimized in order to maintain peak performance.

If there are intermittent applications that are struggling to keep up with the production demands within your system, please reach out and speak with an Application Engineer.  We are always here to help and we may even be able to help you lower the demand needed by utilizing an engineered point of use compressed air solution.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Why Start a Leak Prevention Program?

All compressed air systems will have some amount of leakage. It is a good idea to set up a Leak Prevention Program.  Keeping the leakage losses to a minimum will save on compressed air generation costs, and reduce compressor operation time which can extend its life and lower maintenance costs.

The Compressed Air Challenge estimates an individual compressed air leak can cost thousands of dollars per year when using $0.07/kWh.

  • 1/16″ diameter hole in excess of $700/year
  • 1/8″ hole in excess of $2900/year
  • 1/4″ hole in excess of $11,735 per year

There are generally two types of leak prevention programs:

  • Leak Tag type programs
  • Seek-and-Repair type programs

Of the two types, the easiest would be the Seek-and-Repair method.  It involves finding leaks and then repairing them immediately. For the Leak Tag method, a leak is identified, tagged, and then logged for repair at the next opportune time.

A successful Leak Prevention Program consists of several important components:

  • Document your Starting Compressed Air Use – knowing the initial compressed air usage will allow for comparison after the program has been followed for measured improvement.
  • Establishment of initial leak loss – See this blog for more details.
  • Determine the cost of air leaks – One of the most important components of the program. The cost of leaks can be used to track the savings as well as promote the importance of the program. Also a tool to obtain the needed resources to perform the program.
  • Find the leaks – Leaks can be found using many methods.  Most common is the use of an Ultrasonic Leak Detector, like the EXAIR Model 9061.  See this blog for more details. An inexpensive handheld meter will locate a leak and indicate the size of the leak.

    Model 9061
    Model 9061
  • Record the leaks – Note the location and type, its size, and estimated cost. Leak tags can be used, but a master leak list is best.  Under Seek-and-Repair type, leaks should still be noted in order to track the number and effectiveness of the program.
  • Plan to repairs leaks – Make this a priority and prioritize the leaks. Typically fix the biggest leaks first, unless operations prevent access to these leaks until a suitable time.
  • Record the repairs – By putting a cost with each leak and keeping track of the total savings, it is possible to provide proof of the program effectiveness and garner additional support for keeping the program going. Also, it is possible to find trends and recurring problems that will need a more permanent solution.
  • Compare and publish results – Comparing the original baseline to the current system results will provide a measure of the effectiveness of the program and the calculate a cost savings. The results are to be shared with management to validate the program and ensure the program will continue.
  • Repeat As Needed – If the results are not satisfactory, perform the process again. Also, new leaks can develop, so a periodic review should be performed to achieve and maintain maximum system efficiency.

An effective compressed air system leak prevention and repair program is critical in sustaining the efficiency, reliability, and cost effectiveness of an compressed air system.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Basics of the Compressor Room

EXAIR Corporation has staked our reputation on a keen ability to help you get the most out of your compressed air system since 1983.  Now, the bulk of our expertise lies in the implementation and proper use of engineered products on the demand side, but we fully recognize that there are critical elements for optimization on the supply side too.  And that, quite literally, starts in the compressor room.  This is not an exhaustive, specifically detailed list, but here are some you might consider to get the most from the (again, quite literally) beginning:

  • Location.  If you’re building a new facility, or doing a major rehab of your existing one, having the compressor room as close as practical to the point(s) of use is best, IF all other things are equal.  You’ll use less pipe if you don’t have to run it so far.  You’ll also be able to use smaller diameter lines because you won’t have to worry about line loss (pressure drop due to friction as the air flows through the total length) as much.
  • Location part 2.  If all other things are NOT equal, having the compressor room close to the point of use may not be best for you.
    • Your air compressor pulls in air from the immediate environment.  It’s better to go with longer and bigger pipe in your distribution system than it is to put your compressor in a location where it’ll pull in dust & particulate from grinding operations, humidity from a boiler plant, fumes from chemical production, etc.
    • There are some pretty darn quiet air compressors out there, but there are some pretty loud ones too.  Especially in small to mid size facilities, putting the compressor in an area that upsizes the required piping is still likely a better idea, due to the downsizing of the noise levels that personnel will be exposed to.
  • Environment.  No matter where your compressor is located, the machine itself should be protected from heat and other harsh environmental elements.  That means if it’s inside the plant, the compressor room should be adequately ventilated.  In some situations, the compressor may be best installed outside the plant, in its own building or protective structure.  This should be designed to protect against solar load…in addition to the high temperature associated with a hot summer day, the sun’s rays beating down on your air compressor will radiate a tremendous amount of heat into it.
  • Filtration.  Whatever is in the air in your compressor room is going to get into your compressed air.  This is doubly problematic: particulate debris can damage the air compressor’s moving parts, and it can likewise damage your pneumatic cylinders, actuators, tools, motors, etc. as well.  Make sure the intake of your compressor is adequately filtered.
  • Maintenance.  Air compressors, like any machinery with moving parts, require periodic preventive maintenance, and corrective maintenance when something inevitably breaks down.  There should be adequate space factored in to your compressor room’s layout for this.  The only thing worse than having to fix something is not having the room to fix it without taking other stuff apart.
Patrick Duff, a production equipment mechanic with the 76th Maintenance Group, takes meter readings of the oil pressure and temperature, cooling water temperature and the output temperature on one of two 1,750 horsepower compressors. Each compressor is capable of producing 4,500 cubic feet of air at 300 psi. The shop also has a 3,000 horsepower compressor that produces 9,000 cubic feet of air at 300 psi. By matching output to the load required, the shop is able to shut down compressors as needed, resulting in energy savings to the base. (Air Force photo by Ron Mullan)

These are a few things to consider on the supply end.  If you’d like to talk about how to get the most out of your compressed air system, EXAIR is keen on that.  Give us a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook