The Importance Of Air Compressor System Maintenance

 

It should go without saying, but proper operation of anything that has moving parts will depend on how well it’s maintained.  Compressed air systems are certainly no exception; in fact; they’re a critical example of the importance of proper maintenance, for two big reasons:

*Cost: compressed air, “the fourth utility,” is expensive to generate.  And it’s more expensive if it’s generated by a system that’s not operating as efficiently as it could.

*Reliability: Many industrial processes rely on clean or clean & dry air, at the right pressure, being readily available:

  • When a CNC machine trips offline in the middle of making a part because it loses air pressure, it has to be reset.  That means time that tight schedules may not afford, and maybe a wasted part.
  • The speed of pneumatic cylinders and tools are proportional to supply pressure.  Lower pressure means processes take longer.  Loss of pressure means they stop.
  • Dirt & debris in the supply lines will clog tight passages in air operated products.  It’ll foul and scratch cylinder bores.  And if you’re blowing off products to clean them, anything in your air flow is going to get on your products too.

Good news is, the preventive maintenance necessary to ensure optimal performance isn’t all that hard to perform.  If you drive a car, you’re already familiar with most of the basics:

*Filtration: air compressors don’t “make” compressed air, they compress air that already exists…this is called the atmosphere, and, technically, your air compressor is drawing from the very bottom of the “ocean” of air that blankets the planet.  Scientifically speaking, it’s filthy down here.  That’s why your compressor has an inlet/intake filter, and this is your first line of defense. If it’s dirty, your compressor is running harder, and costs you more to operate it.  If it’s damaged, you’re not only letting dirt into your system; you’re letting it foul & damage your compressor.  Just like a car’s intake air filter (which I replace every other time I change the oil,) you need to clean or replace your compressor’s intake air filter on a regular basis as well.

*Moisture removal: another common “impurity” here on the floor of the atmospheric “ocean” is water vapor, or humidity.  This causes rust in iron pipe supply lines (which is why we preach the importance of point-of-use filtration) and will also impact the operation of your compressed air tools & products.

  • Most industrial compressed air systems have a dryer to address this…refrigerated and desiccant are the two most popular types.  Refrigerant systems have coils & filters that need to be kept clean, and leaks are bad news not only for the dryer’s operation, but for the environment.  Desiccant systems almost always have some sort of regeneration cycle, but it’ll have to be replaced sooner or later.  Follow the manufacturer’s recommendations on these.
  • Drain traps in your system collect trace amounts of moisture that even the best dryer systems miss.  These are typically float-operated, and work just fine until one sticks open (which…good news…you can usually hear quite well) or sticks closed (which…bad news…won’t make a sound.)  Check these regularly and, in conjunction with your dryers, will keep your air supply dry.

*Lubrication: the number one cause of rotating equipment failure is loss of lubrication.  Don’t let this happen to you:

  • A lot of today’s electric motors have sealed bearings.  If yours has grease fittings, though, use them per the manufacturer’s directions.  Either way, the first symptom of impending bearing failure is heat.  This is a GREAT way to use an infrared heat gun.  You’re still going to have to fix it, but if you know it’s coming, you at least get to say when.
  • Oil-free compressors have been around for years, and are very popular in industries where oil contamination is an unacceptable risk (paint makers, I’m looking at you.)  In oiled compressors, though, the oil not only lubricates the moving parts; it also serves as a seal, and heat removal medium for the compression cycle.  Change the oil as directed, with the exact type of oil the manufacturer calls out.  This is not only key to proper operation, but the validity of your warranty as well.

*Cooling:  the larger the system, the more likely there’s a cooler installed.  For systems with water-cooled heat exchangers, the water quality…and chemistry…is critical.  pH and TDS (Total Dissolved Solids) should be checked regularly to determine if chemical additives, or flushing, are necessary.

*Belts & couplings: these transmit the power of the motor to the compressor, and you will not have compressed air without them, period.  Check their alignment, condition, and tension (belts only) as specified by the manufacturer.  Keeping spares on hand isn’t a bad idea either.

Optimal performance of your compressed air products literally starts with your compressor system.  Proper preventive maintenance is key to maximizing it.  Sooner or later, you’re going to have to shut down any system to replace a moving (or wear) part.  With a sound preventive maintenance plan in place, you have a good chance of getting to say when.

If you’d like to talk about other ways to optimize the performance of your compressed air system,  give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

 

Image courtesy of U.S. Naval Forces Central Command/U.S. Fifth Fleet, Creative Commons License 

Compressed Air Filtration – Particulate, Coalescing, and Adsorption Types

Compressed air systems will contain contaminants that can lead to issues and increased costs through contamination of product, damage to the air operated devices, and air line clogging and restriction. Proper air preparation is critical to optimizing performance throughout the plant operations.

Because there are different types of contaminants, including solid particles, liquid water, and vapors of water and oil, there are different methods of filtration, each best suited for maximum efficiency in contaminant removal.

Particulate Filters – The compressed air flows from outside to inside of the filter element. The compressed air first passes through a baffle arrangement which causes centrifugal separation of the largest particles and liquid drops (but not liquid vapors), and then the air passes through the filter element.  The filter element is usually a sintered material such as bronze.  The filter elements are inexpensive and easy to replace. Filtration down to 40-5 micron is possible.

9001

Particulate Type Filter with Sintered Bronze Element

Coalescing Filters – This type operates differently from the particulate type.  The compressed air flows from inside to outside through a coalescing media. The very fine water and oil aerosols come into contact with fibers in the filter media, and as they collect, they coalesce (combine) to form larger droplets towards the outside of the filter element. When the droplet size is enough the drops fall off and collect at the bottom of the filter housing.  The filter element is typically made up of some type glass fibers.  The coalescing filter elements are also relatively inexpensive and easy to replace. Filtration down to 0.01 micron at 99.999% efficiency is possible.

9005

Coalescing Type Filter with Borosilicate Glass Fiber Element

Adsorption Filters – In this type of filtration, activated carbon is typically used, and the finest oil vapors, hydrocarbon residues, and odors can be be removed.  The mechanism of filtration is that the molecules of the gas or liquid adhere to the surface of the activated carbon.  This is usually the final stage of filtration, and is only required for certain applications where the product would be affected such as blow molding or food processing.

When you work with us in selecting an EXAIR product, such as a Super Air Knife, Super Air Amplifier, or Vortex Tube, your application engineer can recommend the appropriate type of filtration needed to keep the EXAIR product operating at maximum efficiency with minimal disruption due to contaminant build up and unnecessary cleaning.

If you have questions regarding compressed air filtration or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

Reducing Lubricant in a Blanking Operation

We recently chatted with a customer that was looking to improve the lubrication system for multiple blanking lines.  Blanking involves the cutting of sheet metal in a single step, to separate the piece form the surrounding stock. The part that is cut out is the desired product and  is called the ‘blank.’  This operation can be moderate to fast in speed, and the process creates heat, so a lubricant is used to cool and decrease the wear on the tooling.  Our customer was looking for a better way to apply the lubricant.

We proposed the model AN2010SS, a No Drip, internal mix, narrow angle, round fan Atomizing Nozzle.  The nozzle uses compressed air to create a mist of the liquid with very fine droplet size. When using for the  lubricant, a fine layer can be applied over the entire surface without areas of over coverage and waste.  This leads to lower costs for lubricant, and less mess on the blanks.

No Drip Atomizing Nozzle

No Drip Atomizing Nozzle

To simplify the process, the No Drip model was chosen. The No Drip style has the added benefit of positively stopping liquid flow when the compressed air is turned off.  There is no need to independently control the liquid flow via a control system and valve.

Finally, to control the compressed air side, we recommend the Electronic Flow Control (EFC.)  Utilizing a photoelectric sensor, the open position of the press can be detected and using 1 of many program options, the compressed air can be turned on and off to accurately control the application of the lubricant.  Due to the excessive amount of lubricant being used, the customer was applying every other cycle.  The first blank would be overly lubricated so that there would be some remaining for the next.  With the Atomizing Nozzle and EFC, the right amount of lubricant can be applied for each cycle.  The result is reduced lubricant usage, and a better operation.

EFCp4

If you have questions regarding Atomizing Nozzles or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

What is the USB Data Logger for Digital Flow Meters? How Can It Help Me?

USB Data Logger

The USB data logger works with all of EXAIR’s Digital Flow Meters and provides valuable feedback for optimizing your compressed air system.

EXAIR’s Model 9147 USB Data Logger has become one of the most valuable tools that we sell to help customers get a “view” of their compressed air usage over time. One of the important tenets we promote at EXAIR is energy savings by prudent use of compressed air through our engineered solutions (Air Knife, Air Nozzles, Air Amplifier, etc.). But how does a person in charge of such systems really “know” whether they are helping or hurting their compressed air system?

The first step is to have an appropriate flow meter which can give an indication of how much air volume is being used. EXAIR’s line of Digital Flow Meters are perfect for getting to that point with instant and direct readings that don’t need to be calculated any further. What you see on the meter is the flow in either SCFM or m3/hr calibrations.

The second step is to attach the USB Data Logger to the Digital Flow Meter so that readings can be kept over time. It is like setting up a security camera for your compressed air system. Nothing gets by without being recorded.

The USB Data Logger can be connected to just about any type of monitoring system that has a 4 – 20 mA output to which the 2-wire harness can be installed. A quick and easy initialization to choose the unit of measure, to select the frequency of measurement and some optional alarms is all that is necessary. The software package is included with the USB Data Logger and is convenient to run on a typical desktop or laptop computer. You simply, set it and forget it (at least until you want to do some reporting).

The reporting is how the USB Data Logger can help you as the person concerned with monitoring the compressed air use in your facility. Once the defined monitoring period of time has passed, the USB Data Logger can be removed from its socket, stopped from recording and the data is then downloaded into a suitable format that can be imported into EXCEL or other spreadsheet program for creating charts to analyze what is happening, when it is happening and how much compressed air is being used. In the analysis, you can compare the flow data and times with certain problems in a production line that might cause low pressure condition which shuts machinery down. You might also be able to determine where additional, point of use compressed air storage might be needed close to certain processes.

Ultimately, the USB Data Logger allows you to “see” your compressed air system in a way that allows you to sleuth out problems seen that might have no other explanation. It can also help you to justify your air savings when you apply the other air saving compressed air products that EXAIR produces by monitoring a base line for “before” performance and “after” performance. After all, it if is important to your organization, it should be measured. And compressed air is certainly a utility that should be measured.

Neal Raker, Application Engineer
nealraker@exair.com
@exair_nr

Step 2 of Optimizing Your Compressed Air System, Find & Fix Leaks

Over the past handful of blog posts I have blogged about topics like understanding the demand on your compressor, creating a system pressure profile,  and the effectiveness of filtering your compressed air.  These are all critical steps in ensuring your compressed air system is optimized for maximum efficiency.   These can also all fall into place with our Six Steps To Compressed Air Optimization.

EXAIR Six Steps To Optimizing Your Compressed Air System

EXAIR Six Steps To Optimizing Your Compressed Air System

Another factor in the six steps is identifying and addressing leaks within your system.   Finding leaks in your compressed air system can be done several ways, one of the oldest methods is to use a soap and water mixture to spray on every joint and see if there is a leak that causes bubbles.   The next method would be to use ball valves and pressure gauges to test each run of pipe to ensure they are holding their pressure over a period of time, similar to a leak down test.  The final method, and by far the easiest, would be to utilize our Ultrasonic Leak Detector.

This can be used to sense leaks in compressed air systems up to 20′ away and can also pin point a leak by closely monitoring each joint.  Neal Raker made a great video on how to use the Ultrasonic Leak Detector a while back and it is shown below.

If you have any questions on how to find leaks or how to optimize your compressed air system, give us a call.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

EFC Can Provide Valuable Compressed Air Savings

I recently worked with a customer who was wanting to use one of our 72” Super Ion Air Knife is his paint booth application. He would be using the Super Ion Air Knife to remove any static build up and blow dirt/debris off ABS plastic molds (truck beds) prior to the paint booth. We were both confident the Super Ion Air Knife would perform in the application but he was concerned with the amount of air he would be wasting in between paint cycles. The paint time for each mold is 5 minutes and the blowoff time is 30 seconds, he was planning to leave the knife run during this time. This is an 8 hour per day operation, Monday – Friday, so this practice was going to lead to an expensive waste of compressed air*. I recommended that he incorporate our EFC (Electronic Flow Control) into his process.

Without using the EFC

(* Using $ 0.25 per 1000 SCFM used)

  • 72” Super Ion Air Knife = 208.8 SCFM @ 80 PSIG
  • 208.8 SCFM x 60 minutes x $ 0.25 / 1000 SCFM = $ 3.13 per hour
  • $ 3.13 per hour x 8 hours = $ 25.04 per 8-hour day
  • $ 25.04 x 5 days = $ 125.20 per work week
  • $ 125.20 per week x 52 weeks = $6,510.40 per work year without the EFC control

The EFC is an electronic flow control that minimizes compressed air usage by incorporating a timing controlled (0.10 seconds to 120 hours) photoelectric sensor. The unit will turn off the compressed air supply when there are no parts present and provides an easy way to program the device to a specific application. The EFC offers an additional eight programmable on/off modes and is suited for NEMA 4 environments. It can also be easily wired for electric, 100-240VAC, 50/60Hz.

EFCp4

With the EFC installed (turning the air off for 4.5  minutes with a 30 second cycle time = 6 minutes/hour compressed air usage)

  • 208.8 SCFM x 6 minute x $ 0.25 / 1000 SCFM = $ 0.31 per hour
  • $ 0.31 per hour x 8 hours = $ 2.48 per 8-hour day
  • $ 2.48 x 5 days = $ 12.40 per work week
  • $ 12.40 per week x 52 weeks = $644.80 per work year with the EFC control 

$ 6,510.40 per year (w/o EFC) – $ 644.80 per year (w/ EFC) = $5,865.60 projected savings per year by incorporating the EFC.

This example illustrates, clearly, why choosing the EFC is a good idea. It has the ability to keep compressed air costs to a minimum and saves compressed air for use within other processes around the plant. With this type of compressed air savings, the unit would pay for itself in less than 3 months.

If you would like to see how we might be able to improve your process or provide a solution for valuable savings, please contact one of our Application Engineers.

Justin Nicholl
Application Engineer
justinnicholl@EXAIR.com
@EXAIR_JN

EXAIR Receives Honorable Mention in Green Manufacturer Product Innovation Award

EXAIR’s model 1126, 1″ Flat Super Air Nozzle received an honorable mention from Green Manufacturer magazine for the 2013 Product Innovation Awards. This competition was open to technology developers and manufacturers who have introduced new products designed to ensure environmental sustainability between January 1, 2012 and April 1, 2013. Green Manufacturer magazine includes a diverse range of products from biological building materials to welding tools, each with a unique set of qualifications and applications.

The competition focuses on the greenness of the product and how sustainably it is manufactured, as well as the ecopractices of the company. The claims were verified through judging which relied on third party testing and certification, reports to published databases, provision of specific metrics/quantitative information, and customer testimonials with quantitative data.

IMG_3206

The award with the 1″ Flat Super Air Nozzles and shims

Our engineered air nozzles, when compared to open blow off or traditional commercial nozzle designs, reduce compressed air consumption and the associated costs of producing compressed air. The lower compressed air volume required from EXAIR’s engineered air nozzles results in less electricity to generate the compressed air. Engineered air nozzles also reduce noise pollution better than traditional solutions and reduce noise exposure levels for personnel.

The model #1126, 1″ Flat Super Air Nozzle is available in a zinc/aluminum alloy suitable for most environments or 316 stainless steel when a higher level of corrosion resistance is necessary. The zinc/aluminum alloy used for this nozzle generally requires less energy
than similar materials to transform into finished products, release no pollutants and no toxic residues during the work cycle, and are fully recyclable at the end of their useful lives.

EXAIR’s whole line of Flat Super Air Nozzles also utilize an internal shim which restricts large amounts of compressed use. The design entrains additional surrounding air in order to provide added volume and force for each application.

EXAIR also takes responsibility for our own processes and manufacturing facility by adhering to our own sustainability plan. This plan helps us reduce waste, recycle more material, reduce energy consumption, reduce water consumption, and keep our employees informed and responsible.

Thanks to Green Manufacturer magazine for recognizing our efforts to keep energy consumption low and sustainability high.

Kirk Edwards
Application Engineer
kirkedwards@exair.com

 

%d bloggers like this: