Intelligent Compressed Air®: Compressor Motors And Controls

Use of compressed air has gone hand in hand with manufacturing for centuries. From manually operated bellows devices that stoked fires to generate the high temperatures needed for forging metals in ancient times, to the massive steam or oil driven compressors used in the 1800’s on projects like the Mont Cenis Tunnel drills, to the sophisticated electric-powered compressors used widely across modern industry, compressed air has actually been “the fourth utility” longer than the other three (electricity, gas, and water) have been in existence.

Diesel & gas powered compressors offer advantages like higher power ratings, portability, and freedom from reliance on local electric power grids, but most air compressors in industrial use are powered by electric motors. They’re plentiful, reliable, and easily adaptable to a range of control schemes that offer efficient operation across a wide variety of operations.

Which control method is right for you will depend on a number of factors specific to your operation. Here’s a brief run-down that may help you narrow down the selection:

  • Compressors in smaller facilities that supply intermittent loads like air guns, paint sprayers, tire inflators, etc. (like the one shown on the right) are oftentimes controlled via Start/Stop. This turns the compressor motor on and off, in response to a pressure signal. This is the simplest, least expensive method, and is just fine for smaller reciprocating compressors that aren’t adversely affected by cycling on & off.
  • Some compressors ARE adversely affected by Start/Stop control…like rotary screw models. These take a finite amount of time to start back up, which could allow header pressure to drop below usable levels. If they cycle too often, heat from the starting current can build up & overheat the motor. If that’s not bad enough, the screw elements & bearings of the compressor itself are oil lubricated…every time they start up, there’s a finite amount of time where metal-to-metal contact occurs before the oil flow is providing rated lubrication. With Load/Unload control, the motor turns continuously, while a valve on the intake of the compressor is cycled by the compressor discharge pressure: it opens (loads) to build or maintain pressure, and closes (unloads) when rated pressure is achieved. When unloaded, the motor uses about 1/3 of the energy it uses while loaded.
  • While turning down energy use to 1/3 of full load is a great way to cut operating cost while maintaining operational integrity of your compressed air system, and physical integrity of your compressor, it doesn’t necessarily make sense when demand may be low enough to be serviced by existing system storage over long periods of time. That’s where Dual/Auto Dual control comes in. It allows you to select between Start/Stop and Load /Unload control modes.  Automatic Dual Control incorporates an over-run timer, so that the motor is stopped after a certain period of time without a demand. This method is most often used in facilities where different shifts have substantially different compressed air load requirements.

When any of the above control schemes are used, they will necessarily rely on having an adequate storage capacity…the compressor’s receiver, and intermediate storage (like EXAIR’s Model 9500-60 60 Gallon Receiver Tank, shown on right) must be adequately sized (and strategically located) to ensure adequate point-of-use pressures are maintained while the compressor’s motor or intake valve cycle. Other methods use variable controls to “tighten up” the cycle bands…these don’t rely on as much storage volume, and in some (but not all) cases, result in higher energy efficiency:

  • A variation of Load/Unload control, called Modulation, throttles the intake valve instead of opening & closing it, to maintain a specific system pressure. This method is limited in range from 100% to 40% of rated capacity, though, so it’s fairly inefficient in many cases.
  • Slide, spiral, or turn valves are built in to certain compressor designs to control output by a method called Variable Displacement, which (as advertised) changes the physical displacement volume of the air end. When header pressure rises, it sends a signal which repositions the valve progressively, reducing the working length of the rotors. This allows some bypass at the inlet, limiting the volume of air that’s being compressed with each turn of the rotor. Since the inlet pressure & compression ratio remain constant, the power draw from the partial load is considerably lower…so it costs less to operate. The normal operating range for this method is from 100% to 40% of rated capacity, but when used in conjunction with inlet valve Modulation, it’s effective & efficient down to 20% of rated capacity.
  • Of course, the most significant advance in efficient control of rotating industrial equipment since Nikola Tesla invented 3-phase AC is the Variable Speed Drive. When the frequency of the AC power supplied to an electric motor is changed, the speed at which it rotates changes in direct proportion. By applying this type of control to an air compressor, the motor’s speed is continuously controlled to match the air demand. Energy costs can be greatly reduced, as this method allows efficient turn down to as low as 20% of rated capacity.

As mentioned a couple times above, multiple control schemes can be applied, depending on user specific needs. Adding accessories, of course, adds cost to your capital purchase, but discussions with your air compressor dealer will lay out the pros, cons, and return on investment. While we don’t sell, service, or even recommend specific air compressors, EXAIR Corporation is in the business of helping you get the most out of your compressed air system. If you’d like to talk more about it, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Protecting Employees With PPE vs. Engineered Controls and Substitution

PPE has been a hot topic and new buzzword for a lot of people and throughout many industries over the past 6 months, and rightfully so. When you look at manufacturing though, PPE has been a buzzword for decades. We continue to evolve processes, equipment, and wearables to ensure the safety of operators.  It all boils down to the fact that PPE and the equipment have to be used, and used appropriately in order to be effective.

When reviewing the CDC’s guides for Hierarchy of Controls the least effective method to protect workers is PPE that they must implement and wear/use properly. The fact is, PPE is one of the cheaper entry levels to get to safe working conditions upfront. However, the cost of ownership can quickly surpass more effective methods of providing safe conditions for operators, such as installation of engineered controls or even substituting the hazard w/ engineered solutions.

CDC’s Hierarchy of Controls

 

So what exactly does that mean to the people on the shop floor? Rather than having to grab a set of pinch and roll earplugs every day on the way through the breezeway to get to the production line, permanently installing quiet products like Super Air Nozzles or Super Air Knives in place of open-ended pipes and drilled pipe blowoffs could eliminate the need for these uncomfortable nuisances. And reliance on personnel to use them correctly, or use them at all is a gamble.

How else can EXAIR help in this pursuit of operator safety and happiness? We offer a free service, the EXAIR Efficiency Lab, which will test your current blow-off products for force, flow, air consumption and noise level. We then recommend an engineered solution if we can improve upon those parameters (spoiler alert, we can) that will meet or exceed OSHA standards for dead-end pressure and allowable noise level exposure.

EXAIR’s Free Efficiency Lab

For this example, installing a quiet product to aid in lowering noise levels can create an environment that no longer needs PPE for protecting personnel. The fix is permanent and eliminates forgotten, lost or broken PPE and the expensive associated with them.

If you would like to discuss any of these options further, please let me know.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Super Air Wipe Controls Coating Thickness On Tubing

A large manufacturing company called looking for a better solution to control the thickness of a curing agent being applied to the outside of tubing used in the automotive industry. The tubing is formed in an extruder and travels through a liquid cooling chamber and then air dried. After the tubing is dried, it is sent to a spray chamber where the curing agent is applied to the exterior. On the exit side of the spray chamber, the customer had installed several flexible air lines placed around the perimeter of the tubing to blow air across the surface to help control the coating thickness. This worked somewhat but they were seeing an increase in the amount of rejected material as the air pattern was sporadic and uneven, which caused streaking and dry spots in certain areas of the tubing. They reviewed our web site and familiarized themselves with our Air Wipes but were unsure of the best design and size to fit their need so they reached out for assistance.

After further discussing the process, their tube O.D. sizes range from 3/8″ – 1/2″, making our 1″ Air Wipe the ideal solution. As far as the design, the Standard or Super Air Wipe, I recommended they use our Model # 2451 Super Air Wipe kit due to the aluminum construction and stainless steel wired braided hoses being able to withstand the potential temperature in the area of 200°F. The kit includes a filter separator to remove any water or contaminants in the supply and a pressure regulator which would allow them to control the flow and force of the exiting air, to help “dial” it in to fit the demand of the application.

Super Air Wipe is available in sizes from 1/2″ up to 11″ in Aluminum construction and up to 4″ in Stainless Steel construction.

 

EXAIR Air Wipes features a split design, which can easily be clamped around the material, to provide a 360° uniform airflow, perfect for treating the surface of round shapes, like extruded tubing. If you have an application where you are needing to dry, cool or clean the outside of a pipe, hose or cable, contact an application engineer for help making the best product selection.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

EXAIR Cabinet Cooler Systems Control Humidity While Maintaining Internal Temperature

As the weather in the Northern Hemisphere changes over from winter to spring and temperatures start to climb, it is slowly becoming necessary for customers to utilize the Cabinet Cooler Systems to keep control panels cool.

One such situation involved a customer who was building a panel for his client in Malaysia. Malaysia is about 3 degrees north of the Equator, so it is what I would call a semi-tropical if not tropical environment. And such places are quite high in humidity levels. This customer had a client who was in the palm oil processing industry which is quite big in Malaysia. He needed a Cabinet Cooler System to generate about 1000 Btu/hr. of cooling power in a NEMA 12 type system. So I recommended he go with a 1700 Btu/hr. Cabinet Cooler System so he had plenty of capacity. I also recommended he go with 24 VDC thermostat control so he could easily pull the power out from within his panel and not have to run any new circuits.

As the customer duly noted, the fact that the Cabinet Cooler System purges the cabinet with clean, cool and dry compressed air allows for the humidity levels to hang down at a much lower level around 40 – 50% RH instead of up around 80 – 90%. This is attributed to the processing and drying of the compressed air at the production point before it is sent out to the facility and again at the point of use with the included, 5 micron, compressed air filter/separator that comes with each system.

Previously, the customer was using only the small, DC type fans to pull that hot, humid air through the panel which led to many corrosion issues and did not relieve the heat issue at all. With this new improvement, the end user no longer has to worry about such issues. Also, there is virtually no maintenance for this system which produces much longer up-times for the customer as there are no moving parts to wear out. Overall, it was a good recommendation in this case as the Cabinet Cooler System was handling multiple, previously negative issues. Now the pain has been taken away and the end user can move on to solving other, more pressing problems.

Neal Raker, Application Engineer
nealraker@exair.com