About Rotary Screw Air Compressors

Recently, EXAIR Application Engineers have written blogs about reciprocating type air compressors: Single Acting (by Lee Evans) and Dual Acting (by John Ball.) Today, I would like to introduce you, dear EXAIR blog reader, to another type: the Rotary Screw Air Compressor.

Like a reciprocating compressor, a rotary screw design uses a motor to turn a drive shaft. Where the reciprocating models use cams to move pistons back & forth to draw in air, compress it, and push it out under pressure, a rotary screw compressor’s drive shaft turns a screw (that looks an awful lot like a great big drill bit) whose threads are intermeshed with another counter-rotating screw. It draws air in at one end of the screw, and as it is forced through the decreasing spaces formed by the meshing threads, it’s compressed until it exits into the compressed air system.

Rotary Screw Air Compressor…how it works.

So…what are the pros & cons of rotary screw compressors?

Pros:

*Efficiency.  With no “down-stroke,” all the energy of the shaft rotation is used to compress air.

*Quiet operation.  Obviously, a simple shaft rotating makes a lot less noise than pistons going up & down inside cylinders.

*Higher volume, lower energy cost.  Again, with no “down-stroke,” the moving parts are always compressing air instead of spending half their time returning to the position where they’re ready to compress more air

*Suitable for continuous operation.  The process of compression is one smooth, continuous motion.

*Availability of most efficient control of output via a variable frequency drive motor.

*They operate on the exact same principle as a supercharger on a high performance sports car (not a “pro” strictly speaking from an operation sense, but pretty cool nonetheless.)

Cons:

*Purchase cost.  They tend to run a little more expensive than a similarly rated reciprocating compressor.  Or more than a little, depending on options that can lower operating costs.  Actually, this is only a “con” if you ignore the fact that, if you shop right, you do indeed get what you pay for.

*Not ideal for intermittent loads.  Stopping & starting a rotary screw compressor might be about the worst thing you can do to it.  Except for slacking on maintenance.  And speaking of which:

*Degree of maintenance.  Most maintenance on a reciprocating compressor is fairly straightforward (think “put the new part in the same way the old one came out.”)  Working on a rotary screw compressor often involves reassembly & alignment of internal parts to precision tolerances…something better suited to the professionals, and they don’t work cheap.

Like anything else, there are important factors to take under consideration when deciding which type of air compressor is most suitable for your needs.  At EXAIR, we always recommend consulting a reputable air compressor dealer in your area, helping them fully understand your needs, and selecting the one that fits your operation and budget.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

What Makes A Compressed Air System “Complete”?

It’s a good question.  When do you know that your compressed air system is complete?  And, really, when do you know, with confidence, that it is ready for use?

A typical compressed air system. Image courtesy of Compressed Air Challenge.

Any compressed air system has the basic components shown above.  A compressed air source, a receiver, dryer, filter, and end points of use.   But, what do all these terms mean?

A compressor or compressed air source, is just as it sounds.  It is the device which supplies air (or another gas) at an increased pressure.  This increase in pressure is accomplished through a reduction in volume, and this conversion is achieved through compressing the air.  So, the compressor, well, compresses (the air).

A control receiver (wet receiver) is the storage vessel or tank placed immediately after the compressor.  This tank is referred to as a “wet” receiver because the air has not yet been dried, thus it is “wet”.  This tank helps to cool the compressed air by having a large surface area, and reduces pulsations in the compressed air flow which occur naturally.

The dryer, like the compressor, is just as the name implies.  This device dries the compressed air, removing liquid from the compressed air system.  Prior to this device the air is full of moisture which can damage downstream components and devices.  After drying, the air is almost ready for use.

To be truly ready for use, the compressed air must also be clean.  Dirt and particulates must be removed from the compressed air so that they do not cause damage to the system and the devices which connect to the system.  This task is accomplished through the filter, after which the system is almost ready for use.

To really be ready for use, the system must have a continuous system pressure and flow.  End-use devices are specified to perform with a required compressed air supply, and when this supply is compromised, performance is as well.  This is where the dry receiver comes into play.  The dry receiver is provides pneumatic capacitance for the system, alleviating pressure changes with varying demand loads.  The dry receiver helps to maintain constant pressure and flow.

In addition to this, the diagram above shows an optional device – a pressure/flow control valve.  A flow control valve will regulate the volume (flow) of compressed air in a system in response to changes in flow (or pressure).  These devices further stabilize the compressed air system, providing increased reliability in the supply of compressed air for end user devices.

Now, at long last, the system is ready for use.  But, what will it do?  What are the points of use?

Points of use in a compressed air system are referred to by their end use.  These are the components around which the entire system is built.  This can be a pneumatic drill, an impact wrench, a blow off nozzle, a pneumatic pump, or any other device which requires compressed air to operate.

If your end use devices are for coating, cleaning, cooling, conveying or static elimination, EXAIR Application Engineers can help with engineered solutions to maximize the efficiency and use of your compressed air.  After placing so much effort into creating a proper system, having engineered solutions is a must.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Intelligent Compressed Air: Membrane Dryers – What are they and How Do they Work?

Recently we have blogged about Compressed Air Dryers and the different types of systems.  We have reviewed the Desiccant and Refrigerant types of dryers, and today I will discuss the basics of  the Membrane type of dryers.

All atmospheric air that a compressed air system takes in contains water vapor, which is naturally present in the air.  At 75°F and 75% relative humidity, 20 gallons of water will enter a typical 25 hp compressor in a 24 hour period of operation.  When the the air is compressed, the water becomes concentrated and because the air is heated due to the compression, the water remains in vapor form.  Warmer air is able to hold more water vapor, and generally an increase in temperature of 20°F results in a doubling of amount of moisture the air can hold. The problem is that further downstream in the system, the air cools, and the vapor begins to condense into water droplets. To avoid this issue, a dryer is used.

Membrane Dryers are the newest type of compressed air dryer. Membranes are commonly used to separate gases, such as removing nitrogen from air. The membrane consists of a group of hollow fiber tubes.  The tubes are designed so that water vapor will permeate and pass through the membrane walls faster than the air.  The dry air continues on through the tubes and discharges into the downstream air system. A small amount of ‘sweep’ air is taken from the dry air to purge and remove the water vapor from inside the dryer that has passed through the membrane tubes.

Membrane Dryer
Typical Membrane Dryer Arrangement

Resultant dew points of 40°F are typical, and dew points down to -40°F are possible but require the use of more purge air, resulting in less final dry compressed air discharging to the system.

The typical advantages of Membrane Dryers are-

  1.  Low installation and operating costs
  2.  Can be installed outdoors
  3.  Can be used in hazardous locations
  4.  No moving parts

There are a few disadvantages to consider-

  1. Limited to low capacity systems
  2. High purge air losses (as high as 15-20% to achieve lowest pressure dew points
  3. Membrane can be fouled by lubricants and other contaminants, a coalescing type filter is required before the membrane dryer.

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

Membrane Dryer Schematic – From Compressed Air Challenge, Best Practices for Compressed Air Systems, Second Edition

 

 

 

Intelligent Compressed Air: Refrigerant Dryers and How They Work

We’ve seen in recent blogs that Compressed Air Dryers are an important part of a compressed air system, to remove water and moisture to prevent condensation further downstream in the system.  Moisture laden compressed air can cause issues such as increased wear of moving parts due to lubrication removal, formation of rust in piping and equipment, quality defects in painting processes, and frozen pipes in colder climates.  The three main types of dryers are – Refrigerant, Desiccant, and Membrane. For this blog, we will review the basics of the Refrigerant type of dryer.

All atmospheric air that a compressed air system takes in contains water vapor, which is naturally present in the air.  At 75°F and 75% relative humidity, 20 gallons of water will enter a typical 25 hp compressor in a 24 hour period of operation.  When the the air is compressed, the water becomes concentrated and because the air is heated due to the compression, the water remains in vapor form.  Warmer air is able to hold more water vapor, and generally an increase in temperature of 20°F results in a doubling of amount of moisture the air can hold. The problem is that further downstream in the system, the air cools, and the vapor begins to condense into water droplets. To avoid this issue, a dryer is used.

Refrigerated Dryer
Fundamental Schematic of Refrigerant-Type Dryer

Refrigerant Type dryers cool the air to remove the condensed moisture and then the air is reheated and discharged.  When the air leaves the compressor aftercooler and moisture separator (which removes the initial condensed moisture) the air is typically saturated, meaning it cannot hold anymore water vapor.  Any further cooling of the air will cause the moisture to condense and drop out.  The Refrigerant drying process is to cool the air to 35-40°F and then remove the condensed moisture.  The air is then reheated via an air to air heat exchanger (which utilizes the heat of the incoming compressed air) and then discharged.  The dewpoint of the air is 35-40°F which is sufficient for most general industrial plant air applications.  As long as the compressed air stays above the 35-40°F temperature, no further condensation will occur.

The typical advantages of Refrigerated Dryers are-

  1.  – Low initial capital cost
  2.  – Relatively low operating cost
  3.  – Low maintenance costs

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

Consider these Variables When Choosing Compressed Air Pipe Size

Here on the EXAIR blog we discuss pressure drops, correct plumbing, pipe sizing, and friction losses within your piping system from time to time.   We will generally even give recommendations on what size piping to use.  These are the variables that you will want to consider when selecting a piping size that will suit your need and give the ability to expand if needed.

The variables to know for a new piping run are as follows.

  • Flow Rate (SCFM) of demand side (products needing the supplied compressed air)
  • System Pressure (psig) – Safe operating pressure that will account for pressure drops.
  • Minimum Operating Pressure Allowed (psig) – Lowest pressure permitted by any demand side point of use product.
  • Total Length of Piping System (feet)
  • Piping Cost ($)
  • Installation Cost ($)
  • Operational Hours ( hr.)
  • Electical Costs ($/kwh)
  • Project Life (years) – Is there a planned expansion?

An equation can be used to calculate the diameter of pipe required for a known flow rate and allowable pressure drop.   The equation is shown below.

A = (144 x Q x Pa) / (V x 60 x (Pd + Pa)
Where:
A = Cross-Sectional are of the pipe bore. (sq. in.).
Q = Flow rate (cubic ft. / min of free air)
Pa = Prevailing atmospheric absolute pressure (psia)
Pd  = Compressor discharge gauge pressure (psig)
V = Design pipe velocity ( ft/sec)

If all of these variables are not known, there are also reference charts which will eliminate the variables needed to total flow rate required for the system, as well as the total length of the piping. The chart shown below was taken from EXAIR’s Knowledge Base.

Piping
Airflow Through 1/4″ Shed. 40 Pipe

Once the piping size is selected to meet the needs of the system the future potential of expansion should be taken into account and anticipated for.   If no expansion is planned, simply take your length of pipe and start looking at your cost per foot and installation costs.    If expansions are planned and known, consider supplying the equipment now and accounting for it if the additional capital expenditure is acceptable at this point.

The benefits to having properly sized compressed air lines for the entire facility and for the long term expansion goals makes life easier.   When production is increased, or when new machinery is added there is not a need to re-engineer the entire system in order to get enough capacity to that last machine.   If the main compressed air system is undersized then optimal performance for the facility will never be achieved.   By not taking the above variables into consideration or just using what is cheapest is simply setting the system up for failure and inefficiencies.   All of these considerations lead to an optimized compressed air system which leads to a sustainable utility.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

The Compressor Whisperer

(Whisperer, Whisperer, Whisperer…)

Professor Penurious is determined to break into television…we hope you enjoy the following trailer for his latest attempt.

Russ Bowman
Application Engineer
Find us on the Web 
Follow me on Twitter 
Like us on Facebook

Need More Capacity? Start By Finding it in House or Renting

I field a decent number of calls from companies that are trying to expand to new lines or venture into an area of production that they have not crossed into before.  Maybe it is bringing a process in-house that they traditionally outsourced, or altering a process that now requires a large scale blow off operation. In many cases, as these companies grow and succeed, their compressed air systems grow with them. Some of them need to find out find out how much air they will need if when they make decisions to bring processes in house or expand a current process.

One of the first options when needing more capacity from your current compressed air system is to take a look at the existing demand side and determine if we can free up enough supply to meet the requirements of this new option.   Let’s say for instance a new 60″ Super Air Knife is needed.   To test that unit at 80 psig inlet pressure we would need to free up 174 SCFM of compressed air. In all the years we have been around it is still surprising to consult with customers who are using large numbers of open blow-offs, homemade air knives, coolant hoses and nozzles for compressed air etc. These companies can find that extra capacity in their current systems by retrofitting engineered solutions on to the aforementioned poor solutions for keeping compressed air efficient. IF you are using some of those solutions, call EXAIR today to find out how much air our products may save you.

In the event that is not possible to find the necessary new volume of compressed air by streamlining your current system, it means looking at adding compressor capacity.  Some companies think they have to go out to buy a new compressor immediately, simply to test this new process.   That is more often than not, false.   The best recommendation I have is to look into renting a compressor, much like the one shown below.

A Rental Tow Behind Air Compressor
A Rental Tow Behind Air Compressor
The compressor distribution piping.
The compressor distribution piping.

I saw this unit while I was jogging, well attempting to jog, on my lunch break.  This was outside a local company that apparently, going through a very similar scenario like I mentioned above.  When I looked a little closer, I noticed the unit included around a 75-100′ of hose that did not use the dreaded quick disconnect fittings everyone sees.  Instead it utilized what I know as a Chicago style air fitting which does not restrict the air flow nearly as much as a quick disconnect and permits you to utilize the largest volume of compressed air from the compressor – remember folks: properly sized compressed air lines and fittings are extremely important when needing to keep volume and pressure of compressed air at high levels.

A Chicago Style Air Fitting
A Chicago Style Air Fitting

 

Once I looked up the statistics on the compressor I found that it will generate up to 375 CFM at 150 psig.  This is more than enough to test or run a 60″ Super Air Knife and validate whether additional compressors are needed, as well as if the Super Air Knife will perform to meet your needs.   Then, when you are done with the test, you can simply return the air compressor. Based on the results of this test, this could be another point to decide if you could save the needed air from your current system or if you would require a new compressor.

The EXAIR Guarantee
The EXAIR Guarantee

The moral that I am trying to instill in this blog is simple.  If you have a need for more compressed air to validate a new or improved process, don’t hesitate to think outside of your existing system. Where there is a will and a need, there is a way.  If it doesn’t work, take advantage of our 30 day unconditional trial.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF