The Importance Of Preventative Maintenance

The first new car I ever bought was a 1995 Ford Escort Wagon. It got GREAT gas mileage (which was important for my 25 mile one-way commute to the day job), and had ample room to haul my keyboards & amplifier rig (which was just as important to my side hustle as a potential rock star). Since it only had four miles on the odometer – and, it was the first purchase I ever financed over a period of YEARS, I decided to follow the owner’s manual’s maintenance schedule religiously. And it paid off: I got eleven years and just shy of 200,000 miles out of one of the least expensive cars ever made. It was actually still running like a top when I sold it to “upgrade” to a minivan, which suited my needs at the time for a vehicle that fitted the car seats for our little boys (who are now a U.S. Marine and a hippie college student, respectively). I actually followed the maintenance schedule for that minivan too, and got 14 years & almost 180,000 miles out of it, without a major breakdown.

Whether you call it “preventive”, “preventative”, “scheduled”, or “planned” maintenance, there’s an old adage that applies in any case:

“If you don’t plan maintenance, it’ll plan itself without regard to your schedule.”

While following the proverbial “owner’s manual’s maintenance schedule” doesn’t guarantee against catastrophic failures, it’s awfully good insurance against them. For your privately owned vehicles, I encourage you to follow the owner’s guide as best you can. For your compressed air system – from the compressor to the devices it provided compressed to (and everything in between) – there’s likely similar documentation to follow, and for good reason. Consider:

  • Air compressor maintenance. Failure to properly maintain a compressor can increase energy consumption by not keeping it operating as efficiently as possible. For example, just like not periodically replacing your car engine’s air filter will impact your gas mileage, failure to do the same for your compressor’s intake air filter will impact its production of compressed air.
  • Air leaks are costly. Not only do they waste the money you spent on running the compressor (a leak that’s equivalent to a 1/16″ diameter hole costs you over $700.00 annually – let me know if you want to do the math on that), your system pressure takes a hit too. Pressure drop caused by those leaks (plural because there’s rarely just one) can create what’s known as “false demand”, which costs you money as well: every 2psi increase in compressor discharge pressure makes for a 1% increase in power consumption. So, it’s really important to stay on top of them. Regularly scheduled surveys with an instrument like EXAIR’s Model 9207 Ultrasonic Leak Detector allows you to quickly find – and then fix – those leaks.
EXAIR Model 9207 Ultrasonic Leak Detector comes with everything you need to find out if you have a leak (with the parabolic disc, lower right) and then zero in on its exact location (with the tubular extension, bottom).
  • Filters, part 1: I already mentioned the compressor intake filter above, but the rest of the filters in the system need attention from time to time as well. Filter manufacturers typically call for replacing the element in a filter when pressure drop reaches a certain point. I’ve seen published values of 2-5psi for that. Of course, that may not occur at a convenient time to shut down everything downstream of that filter, so lots of folks replace those elements as part of planned maintenance evolutions that require depressurization of that particular part of the system anyway. Dirty filters mean you have to increase their inlet pressure to maintain the same outlet pressure you had when they were clean – and the same 1% increase in power consumption for a 2psi pressure increase applies here too.
  • Filters, part 2: most compressed air operated products have small passages that the air has to flow through, and without filtration, those can get clogged with dirt that the intake filter doesn’t catch, solid particulate from compressor ‘wear & tear’, and rust from header pipe corrosion, just to name the “usual suspects”. An argument could be made that installation & upkeep of properly rated Filter Separators at the point of use of these devices is part of those devices’ planned maintenance. In any case, it’s akin to the awfully good insurance against catastrophic failures I mentioned earlier.
Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

Again, many of the components that make up a typical industrial compressed air system will have a manufacturer’s recommended maintenance schedule, but if they don’t, how can you properly plan for it? Monitoring of certain system parameters can be a valuable tool for determining how often some planned maintenance should be performed:

  • Power consumption of the compressor. The benefit of measuring & logging this on a regular basis is, if you see sudden changes, you can start looking for what’s causing them. Maybe a bearing or belt is wearing out, some leaks have popped up, or a filter’s clogged. In any case, it’s an indication that SOMETHING needs attention. Large industrial compressors might even have power monitoring in their control scheme. If not, there ARE other parameters you can measure…like:
  • Pressure and flow. EXAIR’s Pressure Sensing Digital Flowmeters make monitoring these parameters quick and easy. Managing the readings can be done with our USB Data Logger, or you can get it on your computer, via a Zigbee Mesh Gateway, with our Wireless Models.
EXAIR Digital Flowmeters are made for iron, copper, or aluminum compressed air pipe in sizes from 1/2″ to 8″ diameters. Options include Pressure Sensing, Wireless Output, USB Data Logger, Hot Tap, and Metric display.

At EXAIR, we’re committed to helping you get the most out of your compressed air system. If you’d like our help with that, give me a call.

Russ Bowman, CCASS

Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Featured image courtesy of Compressor1creative commons license

Find Compressed Air Leaks with an Ultrasonic Leak Detector

The Ultrasonic Leak Detector (ULD) is a hand-held, high quality instrument that can locate costly leaks in a compressed air system. The definition of Ultrasonic as defined by Merriam-Webster is: “having a frequency above the human ear’s audibility limit of about 20,000 hertz —used of waves and vibrations.” The human hearing range depends on pitch and sound. Sound is a measure of how low or high the volume of loudness in terms of decibels (dBA) and “Pitch” is measured in Hertz (Hz).The overall spectra of the emitted ultrasonic sound is “white noise”, white noise is the broad band emission of sound.

Humans can detect sounds in a frequency range from about 20 Hz to 20 kHz. (Human infants can actually hear frequencies slightly higher than 20 kHz, but lose some high-frequency sensitivity as they mature; the upper limit in average adults is often closer to 15–17 kHz.)

The Model 9061 ULD is designed to locate the source of ultrasonic sound emissions and is used to find compressed air leaks. These ultrasonic sound emissions are converted by the ULD to a range that can be heard by humans. All this being said, the EXAIR ULD makes finding your air leaks fast and efficient.

The Model 9061 comes complete with with a hard shell plastic case, headphones, parabola, tubular adapter, tubular extension and a 9 volt battery. The ULD can be adjusted to filter out background noise typically heard in manufacturing environments by using the X1, X10 and X100 sensitivity settings. The “on/off” thumb wheel can be used for sensitivity adjustment within each of theses settings. The parabola or tubular extension can be attached to the ULD masking out background noise and finding the ultrasonic sounds being generated from the leaks.

Compressed air is an expensive cost center so using the ULD to detect and fix air leaks can not only be fun but also show a payback on investment with just one leak detection. The illustration below demonstrates just how a payback occurs.

EXAIR has many tools and accessories for your intelligent air needs and want to hear from you as we have Application engineers ready to assist your projects and compressed air challenges.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Why Start a Leak Prevention Program?

All compressed air systems will have some amount of leakage. It is a good idea to set up a Leak Prevention Program.  Keeping the leakage losses to a minimum will save on compressed air generation costs, and reduce compressor operation time which can extend its life and lower maintenance costs.

The Compressed Air Challenge estimates an individual compressed air leak can cost thousands of dollars per year when using $0.07/kWh.

  • 1/16″ diameter hole in excess of $700/year
  • 1/8″ hole in excess of $2900/year
  • 1/4″ hole in excess of $11,735 per year

There are generally two types of leak prevention programs:

  • Leak Tag type programs
  • Seek-and-Repair type programs

Of the two types, the easiest would be the Seek-and-Repair method.  It involves finding leaks and then repairing them immediately. For the Leak Tag method, a leak is identified, tagged, and then logged for repair at the next opportune time.

A successful Leak Prevention Program consists of several important components:

  • Document your Starting Compressed Air Use – knowing the initial compressed air usage will allow for comparison after the program has been followed for measured improvement.
  • Establishment of initial leak loss – See this blog for more details.
  • Determine the cost of air leaks – One of the most important components of the program. The cost of leaks can be used to track the savings as well as promote the importance of the program. Also a tool to obtain the needed resources to perform the program.
  • Find the leaks – Leaks can be found using many methods.  Most common is the use of an Ultrasonic Leak Detector, like the EXAIR Model 9061.  See this blog for more details. An inexpensive handheld meter will locate a leak and indicate the size of the leak.

    Model 9061
    Model 9061
  • Record the leaks – Note the location and type, its size, and estimated cost. Leak tags can be used, but a master leak list is best.  Under Seek-and-Repair type, leaks should still be noted in order to track the number and effectiveness of the program.
  • Plan to repairs leaks – Make this a priority and prioritize the leaks. Typically fix the biggest leaks first, unless operations prevent access to these leaks until a suitable time.
  • Record the repairs – By putting a cost with each leak and keeping track of the total savings, it is possible to provide proof of the program effectiveness and garner additional support for keeping the program going. Also, it is possible to find trends and recurring problems that will need a more permanent solution.
  • Compare and publish results – Comparing the original baseline to the current system results will provide a measure of the effectiveness of the program and the calculate a cost savings. The results are to be shared with management to validate the program and ensure the program will continue.
  • Repeat As Needed – If the results are not satisfactory, perform the process again. Also, new leaks can develop, so a periodic review should be performed to achieve and maintain maximum system efficiency.

An effective compressed air system leak prevention and repair program is critical in sustaining the efficiency, reliability, and cost effectiveness of an compressed air system.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Starting a Leak Prevention Program

Since all compressed air systems will have some amount of leakage, it is a good idea to set up a Leak Prevention Program.  Keeping the leakage losses to a minimum will save on compressed air generation costs,and reduce compressor operation time which can extend its life and lower maintenance costs.

SBMart_pipe_800x

There are generally two types of leak prevention programs:

  • Leak Tag type programs
  • Seek-and-Repair type programs

Of the two types, the easiest would be the Seek-and-Repair method.  It involves finding leaks and then repairing them immediately. For the Leak Tag method, a leak is identified, tagged, and then logged for repair at the next opportune time.  Instead of a log system, the tag may be a two part tag.  The leak is tagged and one part of the tag stays with the leak, and the other is removed and brought to the maintenance department. This part of the tag has space for information such as the location, size, and description of the leak.

The best approach will depend on factors such as company size and resources, type of business, and the culture and best practices already in place. It is common to utilize both types where each is most appropriate.

A successful Leak Prevention Program consists of several important components:

  • Baseline compressed air usage – knowing the initial compressed air usage will allow for comparison after the program has been followed for measured improvement.
  • Establishment of initial leak loss – See this blog for more details.
  • Determine the cost of air leaks – One of the most important components of the program. The cost of leaks can be used to track the savings as well as promote the importance of the program. Also a tool to obtain the needed resources to perform the program.
  • Identify the leaks – Leaks can be found using many methods.  Most common is the use of an Ultrasonic Leak Detector, like the EXAIR Model 9061.  See this blog for more details. An inexpensive handheld meter will locate a leak and indicate the size of the leak.

    ULD_Pr
    Using the Model 9061 Ultrasonic Leak Detector to search for leaks in a piping system
  • Document the leaks – Note the location and type, its size, and estimated cost. Leak tags can be used, but a master leak list is best.  Under Seek-and-Repair type, leaks should still be noted in order to track the number and effectiveness of the program.
  • Prioritize and plan the repairs – Typically fix the biggest leaks first, unless operations prevent access to these leaks until a suitable time.
  • Document the repairs – By putting a cost with each leak and keeping track of the total savings, it is possible to provide proof of the program effectiveness and garner additional support for keeping the program going. Also, it is possible to find trends and recurring problems that will need a more permanent solution.
  • Compare and publish results – Comparing the original baseline to the current system results will provide a measure of the effectiveness of the program and the calculate a cost savings. The results are to be shared with management to validate the program and ensure the program will continue.
  • Repeat As Needed – If the results are not satisfactory, perform the process again. Also, new leaks can develop, so a periodic review should be performed to achieve and maintain maximum system efficiency.

In summary – an effective compressed air system leak prevention and repair program is critical in sustaining the efficiency, reliability, and cost effectiveness of an compressed air system.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB