Compressed Air Leaks and the Problems They Cause

Over the Fourth of July I had a great opportunity to do some backpacking in the backwoods of the Adirondack Mountains in Upstate New York. “That sounds awesome!” is what most people would think; looking back on it, it was awesome. BUT, at the time it was the very definition of complete and total suffer fest. During my time on the trail, I learned three life lessons. First, always thoroughly study up on every bail out point along the trail. Second, water proofing has its limits; and thirdly, when things leak it is dreadful. After 7 miles of crawling over rocks and traversing lakes and streams in the pouring down rain everything was soaked and water was leaking through our rain jackets, leaving me and my girlfriend cold, wet, and sore as all get out – all on day one.

Heading up the Algonquin Mountain trail starting Colden Lake

Leaks don’t just stink when they appear in your rain coat, they are dreadful all around whether it is leaking faucets, a leaky basement or compressed air line leaks. Unlike the fact that I currently have no solution for the leaking rain coat, I do have a solution for your leaking air lines. Leaks are costly and an all-around waste of money that can have severe implications on how the air is being used and the entire system itself.

There are four main affects that a leak in your compressed air system can have and they are as follows; 1) leaks can cause a pressure drop across the system, 2) leaks shorten the life of almost all air supply system equipment, 3) leaks demand increased running time of the compressor, and 4) leaks produce unnecessary compressor capacity by demanding more and more air.

  • A pressure drop across your compressed air system can lead to a decreased efficiency of the end use equipment (i.e. an EXAIR Air Knife or Air Nozzle). This adversely effects production as it may take longer to blow off or cool a product or not blow off the product well enough to meet quality standards.
  • Leaks can shorten the life of almost all supply system components such as air compressors. This is because the compressor has to continuously run to make up for the air lost from leaks. By forcing the equipment to continuously run or cycle more frequently means that the moving parts in the compressor will wear down faster.
  • An increased run time due to leaks can also lead to more maintenance on supply equipment for the same reasons as to why the life of the compressor is shortened. The increase stress on the compressor and supply side components due to unnecessary running of the compressor.
  • Leaks can also lead to adding unnecessary compressor size. The wasted air that is being expelled from the leak is an additional demand in your system. If leaks are not fixed it may require a larger compressor to make up for the loss of air in your system.
EXAIR’s Ultrasonic Leak Detector

It is fairly easy to find these leaks, simply use EXAIR’s affordable Ultrasonic Leak Detector. This leak detector uses ultrasonic waves to detect where costly leaks can be found so that they can be patched or fixed. So don’t get stuck in some rainy day with your compressed air leaking everywhere; find those pesky leaks, mark them for maintenance and seal them up.

If you have any questions or want more information on EXAIR’s Ultrasonic Leak Detector or like products. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Why Start a Leak Prevention Program?

All compressed air systems will have some amount of leakage. It is a good idea to set up a Leak Prevention Program.  Keeping the leakage losses to a minimum will save on compressed air generation costs, and reduce compressor operation time which can extend its life and lower maintenance costs.

The Compressed Air Challenge estimates an individual compressed air leak can cost thousands of dollars per year when using $0.07/kWh.

  • 1/16″ diameter hole in excess of $700/year
  • 1/8″ hole in excess of $2900/year
  • 1/4″ hole in excess of $11,735 per year

There are generally two types of leak prevention programs:

  • Leak Tag type programs
  • Seek-and-Repair type programs

Of the two types, the easiest would be the Seek-and-Repair method.  It involves finding leaks and then repairing them immediately. For the Leak Tag method, a leak is identified, tagged, and then logged for repair at the next opportune time.

A successful Leak Prevention Program consists of several important components:

  • Document your Starting Compressed Air Use – knowing the initial compressed air usage will allow for comparison after the program has been followed for measured improvement.
  • Establishment of initial leak loss – See this blog for more details.
  • Determine the cost of air leaks – One of the most important components of the program. The cost of leaks can be used to track the savings as well as promote the importance of the program. Also a tool to obtain the needed resources to perform the program.
  • Find the leaks – Leaks can be found using many methods.  Most common is the use of an Ultrasonic Leak Detector, like the EXAIR Model 9061.  See this blog for more details. An inexpensive handheld meter will locate a leak and indicate the size of the leak.

    Model 9061
    Model 9061
  • Record the leaks – Note the location and type, its size, and estimated cost. Leak tags can be used, but a master leak list is best.  Under Seek-and-Repair type, leaks should still be noted in order to track the number and effectiveness of the program.
  • Plan to repairs leaks – Make this a priority and prioritize the leaks. Typically fix the biggest leaks first, unless operations prevent access to these leaks until a suitable time.
  • Record the repairs – By putting a cost with each leak and keeping track of the total savings, it is possible to provide proof of the program effectiveness and garner additional support for keeping the program going. Also, it is possible to find trends and recurring problems that will need a more permanent solution.
  • Compare and publish results – Comparing the original baseline to the current system results will provide a measure of the effectiveness of the program and the calculate a cost savings. The results are to be shared with management to validate the program and ensure the program will continue.
  • Repeat As Needed – If the results are not satisfactory, perform the process again. Also, new leaks can develop, so a periodic review should be performed to achieve and maintain maximum system efficiency.

An effective compressed air system leak prevention and repair program is critical in sustaining the efficiency, reliability, and cost effectiveness of an compressed air system.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

How to Calculate the Cost of Leaks

Leaks are a hidden nuisance in a compressed air system that can cause thousands of dollars in electricity per year. These leaks on average can account for up to 30% of the operation cost of a compressed air system. A leak will usually occur at connection joints, unions, valves, and fittings. This not only is a huge waste of energy but it can also cause a system to lose pressure along with lowering the life span of the compressor since it will have to run more often to make up for the loss of air from the leak.

There are two common ways to calculate how much compressed air a system is losing due to leaks. The first way is to turn off all of the point of use compressed air devices; once this has been complete turn on the air compressor and record the average time that it takes the compressor to cycle on and off. With the average cycle time you can calculate out the total percentage of leakage using the following formula.

The second method is to calculate out the percentage lost using a pressure gauge downstream from a receiver tank. This method requires one to know the total volume in the system to accurately estimate the leakage from the system. Once the compressor turns on wait until the system reaches the normal operating pressure for the process and record how long it takes to drop to a lower operating pressure of your choosing. Once this has been completed you can use the following formula to calculate out the total percentage of leakage.

The total percentage of the compressor that is lost should be under 10% if the system is properly maintained.

Once the total percentage of leakage has been calculated you can start to look at the cost of a single leak assuming that the leak is equivalent to a 1/16” diameter hole. This means that at 80 psig the leak is going to expel 3.8 SCFM. The average industrial air compressor can produce 4 SCFM using 1 horsepower of energy. Adding in the average energy cost of $0.25 per 1000 SCF generated one can calculate out the price per hour the leak is costing using the following calculation.

If you base the cost per year for a typical 8000 hr. of operating time per year you are looking at $480 per year for one 1/16” hole leak. As you can see the more leaks in the system the more costly it gets. If you know how much SCFM your system is consuming in leaks then that value can be plugged into the equitation instead of the assumed 3.8 SCFM.

If you’d like to discuss how EXAIR products can help identify and locate costly leaks in your compressed air system, please contact one of our application engineers at 800-903-9247.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Finding & Fixing Leaks: The Benefits of Creating a Leak Detection Program

Leaks in a compressed air system can be a substantial source of wasted energy. A facility that hasn’t maintained their compressed air system will likely have a leak rate around 20-30% of the total air production.  But with a leak detection plan you can reduce air leaks to less than 10% of the compressor output.

uhd

Along with the energy waste, leaks will contribute to higher operating cost.  Leaks cause a drop in system pressure, which can make air tools operate poorly, harming production cost and time. In addition, by forcing the equipment to cycle more often, leaks shorten the life of almost all system equipment, including the compressor. Increased running time can also lead to added maintenance and increased downtime. Finally, leaks can lead to adding unnecessary compressor volume.

Since air leaks are almost impossible to see, other methods must be used to locate them. The best way to detect leaks is to use an ultrasonic acoustic detector, Like EXAIR Ultrasonic Leak Detector (ULD). This unit can recognize the high frequency hissing sounds associated with air leaks. A person using the ULD only needs to point it in the direction of the suspected leak. When a leak is present, an audible tone can be heard with the use of the head phones, and the LED display will light.  Testing various unions, pipes, valves and fittings of a complete system can be done quickly and effectively at distances up to 20’ away!

uhd kk

uhd e

The advantages of ultrasonic leak detection include flexibility, speed, ease of use, the ability to test the system while machines are running, and the ability to find a wide variety of leaks. They involve very little training, operators often become competent after 10 minutes of training.

Due to the nature of ultrasound, it is directional in transmission. For this reason, the signal is loudest at its source. By scanning around a test area, it is possible to very quickly target in on a leak site and pin point its exact location. For this reason, ultrasonic leak detection is not only fast, it is also very accurate.

An active leak prevention program will embrace the following components: identification, tracking, repair, verification, and employee participation. All facilities with a compressed air system should establish an aggressive leak reduction program. A team involving managerial representatives from production should be formed to carry out this program.

A leak prevention program should be part of an overall program intended to improve the performance of compressed air systems. Once the leaks are found and repaired, the system should be started from the beginning until all leaks are addressed.

A good compressed air system leak repair program is very important in maintaining the efficiency, reliability, stability and cost effectiveness of any compressed air system.

kkkk

“First a Plant Engineer or Maintenance Supervisor must realize that leak repair is a journey, not a destination. An ongoing compressed air leak monitoring and repair program should be in place in any plant that has a compressed air system.” Explains Paul Shaw, a General Manager for Scales Industrial Technologies’ Air Compressor Division, and an Advanced CAC Instructor, “Leak identification and remediation with a high quality repair can lead to substantial energy savings that typically has a very rapid payback, usually a year or less. In the hundreds of leak audits and repairs that we have done we’ve found that the quality of the repair is critical to ensuring the customer receive the most value for his investment and that the leak remains repaired for as long as possible. From there, constantly monitoring for compressed air leaks and repairing them as they occur can help the plant continue to reap the energy benefits.”

Above is an excerpt from “Best Practices for Compressed Air Systems”, Appendix 4.E.1.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS