In may I wrote a Blog Announcing our new Calculator tool on EXAIR.COM! You can read it here!

The Video below will walk you through how to get the information you need to fill the form in, and take you all the way to final where you can add it to your cart!

By providing certain information like size of the enclosure, NEMA rating needed, and environmental conditions, this new calculator will sort through our large selection of ready-to-ship Cabinet Cooler^{®} Systems and provide instant feedback on the best model number for any applicable electrical enclosure. Taking the guess work out of the equation, EXAIR’s Calculator ensures the customer that they can be confident in selecting the correct product for their unique specifications. You can even Print the form for your records!

If you have any questions or need additional support with the Sizing Calculator please reach out to one of our application Engineers give us a call. Or shoot us an email to techelp@exair.com

For the longest time we have been using this form on EXAIR.com to get the information we needed to manually calculate the internal and external heat loads and ultimately make a recommendation on which Cabinet Cooler System would be best for that application! Typically it would take thirty minuets to an hour to get a email back from a application Engineer!

While the manual Cabinet Cooler Sizing Guide worked great (and we will still reply within 24 hours), we have been racking our heads over here to better that process and get you a solution faster than ever! Now you type in your information and you have a recommendation and a link to that product on the website where you can learn more or place an order! So you can go from form to order in less than 5 Minuets!!!! Check it Out HERE!!

By providing certain information like size of the enclosure, NEMA rating needed, and environmental conditions, this new calculator will sort through our large selection of ready-to-ship Cabinet Cooler^{®} Systems and provide instant feedback on the best model number for any applicable electrical enclosure. Taking the guess work out of the equation, EXAIR’s Calculator ensures the customer that they can be confident in selecting the correct product for their unique specifications. You can even Print the form for your records!

EXAIR’s complete line of Cabinet Cooler systems include 120V AC, 240V AC and 24V DC thermostat voltage, continuous operation, type 316 stainless steel and high temperature models – all of which are selectable with the new calculator. Find this new tool on the website EXAIR.com, in the Knowledge Base Calculators, along with many other resources, such as the CAD Library and Application Database, which also help customers choose a perfect solution. Cabinet Cooler systems start at $534. https://www.exair.com/knowledgebase/calculator-library/cabinet-cooler-system-calculator.html

Is your electrical cabinet overheating and causing expensive shut downs? As spring and summer approach, did your enclosures have seasonal overheating problems last year? Is your electrical cabinets AC Unit failing and breaking down? Then it may be time to consider EXAIR Cabinet Coolers Systems. These systems are compressed air powered cooling units designed to keep your cabinet cool in hot environments. Major benefits include no moving parts to wear out, UL listed to maintain the NEMA integrity of your enclosure (also CE compliant), they are simple and quick to install and they reliably turn on and off as needed (perfect for solving seasonal overheating).

Just one question then; how do you pick which Cabinet Cooler is best for your application? It’s time to bust out ye ole trusty calculator and crunch some numbers. Keep in mind that the following calculations use baselines of an Inlet air pressure of 100 psig (6.9 bar), compressed air temperature of 70F (22C), and a desired internal temp of 95F (35C). Changes in these values will change the outcome, but rest assured a Cabinet Cooler system will generally operate just fine with changes to these baselines.

Before we dig right into the math, keep in mind you can submit the following parameters to EXAIR and we will do the math for you. You can use our online Cabinet Cooler Sizing Guide and receive a recommendation within 24 hours.

There are two areas where we want to find the amount of heat that is being generated in the environment; this would be the internal heat and the external heat. First, calculate the square feet exposed to the air while ignoring the top. This is just a simple surface are calculation that ignores one side.

(Height x Width x 2) + (Height x Depth x 2) + (Depth x Width) = Surface Area Exposed

Next, determine the maximum temperature differential between the maximum surrounding temperature (max external temp) and the desired Internal temperature. Majority of cases the industrial standard for optimal operation of electronics will work, this value is 95F (35C).

Max External Temp – Max Internal Temp Desired = Delta T of External Temp

Now that we have the difference between how hot the outside can get and the max, we want the inside to be, we can look at the Temperature Conversion Table which is below and also provided in EXAIR’s Cabinet Cooler System catalog section for you. If your Temperature Differential falls between two values on the table simply plug the values into the interpolation formula.

Once you have the conversion factor for either Btu/hr/ft2, multiply the Surface Area Exposed by the conversion factor to get the amount of heat being generated for the max external temperature. Keep this value as it will be used later.

Surface Area Exposed x Conversion Factor = External Heat Load

Now we will be looking at the heat generated by the internal components. If you already know the entire Watts lost for the internal components simply take the total sum and multiply by the conversion factor to get the heat generated. This conversion factor will be 3.41 which converts Watts to Btu/hr. If you do not know your watts lost simply use the current external temperature and the current internal temperature to find out. Calculating the Internal Heat Load is the same process as calculating your External Heat Load just using different numbers. Don’t forget if the value for your Delta T does not fall on the Temperature conversion chart use simple Interpolation.

Current Internal Temp – Current External Temp = Delta T of Internal Temperature Surface Area Exposed x Conversion Factor = Internal Heat Load

Having determined both the Internal Heat Load and the External Heat Load simply add them together to get your Total Heat Load. At This point if fans are present or solar loading is present add in those cooling and heating values as well. Now, with the Total Heat Load match the value to the closet cooling capacity in the NEMA rating and kit that you want. If the external temperature is between 125F to 200F you will be looking at our High Temperature models denoted by an “HT” at the start of the part number.

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle Application Engineer EXAIR Corporation Visit us on the Web Follow me on Twitter Like us on Facebook

Leaks are a hidden nuisance in a compressed air system that can cause thousands of dollars in electricity per year. These leaks on average can account for up to 30% of the operation cost of a compressed air system. A leak will usually occur at connection joints, unions, valves, and fittings. This not only is a huge waste of energy but it can also cause a system to lose pressure along with lowering the life span of the compressor since it will have to run more often to make up for the loss of air from the leak.

There are two common ways to calculate how much compressed air a system is losing due to leaks. The first way is to turn off all of the point of use compressed air devices; once this has been complete turn on the air compressor and record the average time that it takes the compressor to cycle on and off. With the average cycle time you can calculate out the total percentage of leakage using the following formula.

The second method is to calculate out the percentage lost using a pressure gauge downstream from a receiver tank. This method requires one to know the total volume in the system to accurately estimate the leakage from the system. Once the compressor turns on wait until the system reaches the normal operating pressure for the process and record how long it takes to drop to a lower operating pressure of your choosing. Once this has been completed you can use the following formula to calculate out the total percentage of leakage.

The total percentage of the compressor that is lost should be under 10% if the system is properly maintained.

Once the total percentage of leakage has been calculated you can start to look at the cost of a single leak assuming that the leak is equivalent to a 1/16” diameter hole. This means that at 80 psig the leak is going to expel 3.8 SCFM. The average industrial air compressor can produce 4 SCFM using 1 horsepower of energy. Adding in the average energy cost of $0.25 per 1000 SCF generated one can calculate out the price per hour the leak is costing using the following calculation.

If you base the cost per year for a typical 8000 hr. of operating time per year you are looking at $480 per year for one 1/16” hole leak. As you can see the more leaks in the system the more costly it gets. If you know how much SCFM your system is consuming in leaks then that value can be plugged into the equitation instead of the assumed 3.8 SCFM.

If you’d like to discuss how EXAIR products can help identify and locate costly leaks in your compressed air system, please contact one of our application engineers at 800-903-9247.

Cody Biehle Application Engineer EXAIR Corporation Visit us on the Web Follow me on Twitter Like us on Facebook