Video Blog: Cabinet Cooler® System Calculator

In may I wrote a Blog Announcing our new Calculator tool on EXAIR.COM! You can read it here!

The Video below will walk you through how to get the information you need to fill the form in, and take you all the way to final where you can add it to your cart!

By providing certain information like size of the enclosure, NEMA rating needed, and environmental conditions, this new calculator will sort through our large selection of ready-to-ship Cabinet Cooler® Systems and provide instant feedback on the best model number for any applicable electrical enclosure.  Taking the guess work out of the equation, EXAIR’s Calculator ensures the customer that they can be confident in selecting the correct product for their unique specifications. You can even Print the form for your records!

If you have any questions or need additional support with the Sizing Calculator please reach out to one of our application Engineers give us a call. Or shoot us an email to techelp@exair.com

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Cabinet Coolers: How to Determine Heat Loads

As summer continues, electrical panels will continue to overheat and cause problems within your process lines.  Freon-based coolers can be less effective in higher ambient conditions; and opening the electrical panels to have a fan blow inside creates a dangerous hazard.  The electrical industry states that for every 10oC rise above the operational temperature, the life of an electrical component is cut in half.  To reduce loss in production and premature equipment failures, it is important to keep electrical components cool.  The EXAIR Cabinet Cooler Systems are designed to do just that. 

From right to left: Small NEMA 12, Large NEMA 12, Large NEMA 4X

To find the correct type and size, we need some information about your electrical panel.  EXAIR makes it easy with the Cabinet Cooler Sizing Guide.  This sheet goes over the important details to find heat loads, proper NEMA type, and options for easy installation.  With a filled-out form, we can make sure that the correct model is recommended.  First, we have to start with the surface area of the electrical panel.  From here, we can do some heat load calculations to compare it with the proper cooling capacity. 

To properly reduce the temperature internally, we need to calculate how much heat is being generated.  Heat loads come from four main areas; internal, external, fan, and solar.  From these four, we can add them together to get the total heat load.  So, on the hottest day of the hottest month, the EXAIR Cabinet Cooler System will still keep your electronics cool.  Here are some methods to find the information needed for heat load calculations.

Internal Heat Load:  The internal load is the heat generated from inside the electrical panel.  This heat is produced from the inefficiencies of electrical devices.  There are two ways that we can figure out the internal heat load.

Step A: The simplest way is by hanging a piece of metal like a washer inside the panel for about 15 minutes.  We can get an average temperature inside.  In the sizing guide, you can mark the temperature next to “Internal temperature now”.  To calculate the heat load, we will need the external temperature at the same time you measured the piece of metal.  This temperature difference can determine the internal heat load per surface area of the panel.  See the chart below.

Step B:  if you know the electrical components inside that generate heat, a list can be made with volt/amp ratings, or watts.  This is very useful for new panels.  The major devices would be VFD (Variable Frequency Drives), power supplies, UPS, transformers, thyristors, etc.  We can calculate the inefficiency of the electrical components which will give us the internal heat load.

External Heat Load:  To keep the electronics cool on the hottest day, we will need to know the highest external temperature that the panel will see.  This can include the temperature that is near an oven.  This can be marked in the Max External Air Temperature Possible.  We can compare this to the Max Internal Air Temperature Desired.  Most electrical components are designed to operate at 95oF (35oC).   With the same chart as above, you can use the temperature difference to determine the external heat load per surface area of the panel.

Panel Fans:  To control the environment inside the electrical panels, we need to block all openings and vents.  And this will include removing panel fans if they are installed.  The Cabinet Cooler System will blow dry cold air to push out the hot humid air from the electrical panel back through the Cabinet Cooler.  Since we are removing a “poor” cooling device, we still need to add this to the heat that is being removed.  You can either give the diameter of the fan or the flow of the fan. 

Solar Heat Load:  The solar heat is only needed if the panel is located outside without cover and exposed to sunlight.  For this type of heat load, we will need to know the color of the electrical panel.  Lighter colors will not absorb as much heat as darker colors.

Because there is so much information that is critical for proper sizing, EXAIR also created a Cabinet Cooler System Calculator to give you a good recommendation to keep your electronics cool. I gave some examples above on how to find the heat loads.  Electrical shutdowns are expensive and annoying.  If you have interruptions from high internal temperatures, EXAIR Cabinet Coolers are a great solution.  They can be installed quickly and easily.  With no moving parts or costly preventative maintenance needed, they can run for decades in keeping your electronics cool.  For our U.S. and Canadian customers, you will receive an AC Sensor for free, a $65.00 value, as a promotional item from now until the end of August 2022 with qualified purchases.  How can you not give them a try?  If you have any questions about Cabinet Coolers or the Sizing Guide, you can contact an Application Engineer at EXAIR.  We will be happy to help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

EXAIR’s New Cabinet Cooler® System Calculator

For the longest time we have been using this form on EXAIR.com to get the information we needed to manually calculate the internal and external heat loads and ultimately make a recommendation on which Cabinet Cooler System would be best for that application! Typically it would take thirty minuets to an hour to get a email back from a application Engineer!

While the manual Cabinet Cooler Sizing Guide worked great (and we will still reply within 24 hours), we have been racking our heads over here to better that process and get you a solution faster than ever! Now you type in your information and you have a recommendation and a link to that product on the website where you can learn more or place an order! So you can go from form to order in less than 5 Minuets!!!! Check it Out HERE!!

By providing certain information like size of the enclosure, NEMA rating needed, and environmental conditions, this new calculator will sort through our large selection of ready-to-ship Cabinet Cooler® Systems and provide instant feedback on the best model number for any applicable electrical enclosure.  Taking the guess work out of the equation, EXAIR’s Calculator ensures the customer that they can be confident in selecting the correct product for their unique specifications. You can even Print the form for your records!

Cabinet Cooler Calculator

            EXAIR’s complete line of Cabinet Cooler systems include 120V AC, 240V AC and 24V DC thermostat voltage, continuous operation, type 316 stainless steel and high temperature models – all of which are selectable with the new calculator. Find this new tool on the website EXAIR.com, in the Knowledge Base Calculators, along with many other resources, such as the CAD Library and Application Database, which also help customers choose a perfect solution. Cabinet Cooler systems start at $534. https://www.exair.com/knowledgebase/calculator-library/cabinet-cooler-system-calculator.html

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Heat Transfer – How Energy Can Move

Heat. One word can bring to mind so many different things from cooking to sun tanning. But what is heat and how does it move. Heat is essentially a form of energy that flows in the form of changing temperatures; this form of energy will flow from high to low. When you describe something as being hot, you are actually describing that the item in question has a higher temperature than your hand thus the thermal (heat) energy is flowing from that object to your hand. This phenomenon is what is referred to as heat transfer. Heat transfer can be observed all the way down to the atomic scale with the property known as specific heat. Every molecule and atom can carry a set amount of energy which is denoted by specific heat; this value is the ration of energy (usually in Joules) divided by the mass multiplied by the temperature (J/g°C).

Energy moving through atoms in an object

But how does this heat move from object to object? On the atomic scale, the atoms are storing the energy which will cause electrons to enter into an excited state and rapidly switch between shells. When the electron returns back to a lower shell (closer to the nucleus) energy is released; the energy released is then absorbed by atoms at a lower energy state and will continue until the thermal energy is equal between the two objects. Heat has four fundamental modes of transferring energy from surface to surface and they are as follows:

Advection
Advection is the physical transport of a fluid from point A to point B, which includes all internal thermal energy stored inside. Advection can be seen as one of the simpler ways of heat transfer.

Conduction
Conduction can also be referred to as diffusion and is the transfer of energy between two objects that have made physical contact. When the two objects come into contact with each other thermal energy will flow from the object with the higher temp to the object with the lower temp. A good example of this is placing ice in a glass of water. The temperature is much lower than the room temperature therefore the thermal energy will flow from the water to the ice.

Convection
Convection is the transfer of thermal energy between an object and a fluid in motion. The faster the fluid moves the faster heat is transferred. This relies on the specific heat property of a molecule in order to determine the rate at which heat will be transferred. The low the specific heat of a molecule the faster and more volume of the fluid will need to move in order to get full affect of convection. Convection is used in modern ovens in order to get a more even heat through out the food while cooking.

Radiation
Radiation is the transfer of thermal energy through empty space and does require a material between the two objects. Going back to the how thermal energy is released from atoms; when the electron returns to a lower energy shell the energy is released in the form of light ranging from infrared light to UV light. Energy in the form of light can then be absorbed by an object in the form of heat. Everyone experiences radiation transfer every day when you walk outside; the light from the sun’s radiation is what keeps this planet habitable.

EXAIR’s engineered compressed air products are used every day to force air over hot surfaces to cool, as well as dry and/or blow off hot materials. Let us help you to understand and solve your heat transfer situations.

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The picture “Energy Transfer – Heat” by Siyavula Education is licensed under CC BY 2.0