Atomizing Nozzles Create Fog for Wet Room Testing

Recently, I was working with a customer that has purchased several of the EXAIR Atomizing Spray Nozzles, specifically the model Aw5020SS.  The customer had another project coming up and needed two more nozzles. I inquired about the application and we discussed at length the way the nozzles are being used.

When a concrete road is being poured, several sample forms are poured during the process. The local Department of Transportation takes the samples and cures them in a wet room for 30 days, and then performs tensile testing, to confirm the concrete meets the strength requirements.  The wet room must be kept at 23°C (73.4°F) and 100% Humidity during this time frame.  The EXAIR model AW5020SS Atomizing Nozzles are used to provide the moisture that ensures the room humidity conditions are met and maintained.  Because the droplets are very fine, the effect of a fog is achieved, with the water droplets suspended in the air, keeping the humidity at 100%.

Atomizing spray nozzles are capable of producing very fine droplet sizes.  A typical rain drop is 6000 microns in diameter, standard liquid nozzles produce droplets ranging from 300-4000 microns.  The EXAIR Atomizing Nozzles produce droplets from 20-100 microns!

AW5010pr800.jpg

Model AW5020SS

Droplet  sizes can be adjusted by varying either the liquid pressure or air pressure. Increasing the air or decreasing the liquid pressure will generally produce a smaller droplet size.

EXAIR manufactures (3) types of Atomizing Nozzles – Internal Mix, External Mix, and Siphon Fed, in both 1/4 NPT and 1/2 NPT sizes. Maximum liquid viscosity is 800 cP. Flow rates range from 0.6 GPH up to 303 GPH, so we’ll be able to find one that meets your flow requirements.

To discuss your application and how an EXAIR Atomizing Nozzle can benefit your process, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

EXAIR Product Of The Year Candidate: Electronic Temperature Control for Dual Cabinet Cooler Systems

We have just found out that four of our new problem solving products have been nominated for Plant Engineering’s Product of the Year (Please Vote for us HERE).  The first candidate I would like to showcase is in the Automation & Controls category.  The Electronic Temperature Control for Dual Cabinet Cooler Systems effectively turn the compressed air supply to the Cabinet Coolers on and off as needed to maintain a constant temperature inside of a hot enclosure. Using the air intermittently to maintain a specific temperature is the most efficient way to operate.

Please Vote!

Please Vote!

The ETC Dual Cabinet Cooler Systems work in conjunction with EXAIR’s UL listed Cabinet Cooler Systems which provide cooling for your electrical enclosures without the use of refrigerant based coolants or fans.   The Cabinet Cooler Systems utilize a compressed air driven Vortex Tube which uses compressed air. This cold compressed air is exhausted into the enclosure which results in a cool working environment for your electronics. Warm air from inside the enclosure is vented safely back out of the cabinet through built in exhausts and the compressed air is only utilized when the internal air temperature reaches the digitally set temperature on the ETC.

How the EXAIR Cabinet Cooler System Works

How the EXAIR Cabinet Cooler System Works

Another added benefit of the ETC on the Cabinet Cooler system is the real time readout of the internal air temperature of your enclosures.  This is on top of the push button set point which will give you a +/-2°F ambient temperature inside of your enclosure.

EXAIR ETC Dual Cabinet Cooler System

EXAIR ETC Dual Cabinet Cooler System

The ETC Dual Cabinet Cooler Systems are designed for larger heat loads ranging from 3,400 BTU/hr. to 5,600 BTU/hr.   The units are available in NEMA 12, NEMA 4, and NEMA 4X ratings.   This means whether you are in a fairly clean environment or a dirty, hot, muggy environment, EXAIR has you covered.

If you would like to discuss either the ETC or the Cabinet Cooler Systems, please contact an Application Engineer.   If you would like to vote for our products, please check out the Plant Engineering Product of the Year page here.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Video Blog: Cabinet Cooler Systems also Stabilize Relative Humidity

EXAIR Cabinet Cooler Systems are able to cool your electrical panels using only clean, dry compressed air. Other systems such as cooling fans or heat exchangers use ambient air full of dust and humidity. The temperature of ambient air also fluctuates with the seasons and will be very warm in the summer months, which degrades their ability to cool as the temperature rises. One of the myths about compressed air cooling is that humidity from the compressed air source will enter the cabinet. A water/dirt filter separator will prevent condensate from entering the cabinet and since relative humidity is carried away with the hot air exhaust, relative humidity will stabilize to 45%. This video shows how quickly EXAIR’s Cabinet Cooler Systems will have an effect on relative humidity.

Dave Woerner
Application Engineer
@EXAIR_DW
DaveWoerner@EXAIR.com

EXAIR Cabinet Cooler Systems Control Humidity While Maintaining Internal Temperature

As the weather in the Northern Hemisphere changes over from winter to spring and temperatures start to climb, it is slowly becoming necessary for customers to utilize the Cabinet Cooler Systems to keep control panels cool.

One such situation involved a customer who was building a panel for his client in Malaysia. Malaysia is about 3 degrees north of the Equator, so it is what I would call a semi-tropical if not tropical environment. And such places are quite high in humidity levels. This customer had a client who was in the palm oil processing industry which is quite big in Malaysia. He needed a Cabinet Cooler System to generate about 1000 Btu/hr. of cooling power in a NEMA 12 type system. So I recommended he go with a 1700 Btu/hr. Cabinet Cooler System so he had plenty of capacity. I also recommended he go with 24 VDC thermostat control so he could easily pull the power out from within his panel and not have to run any new circuits.

As the customer duly noted, the fact that the Cabinet Cooler System purges the cabinet with clean, cool and dry compressed air allows for the humidity levels to hang down at a much lower level around 40 – 50% RH instead of up around 80 – 90%. This is attributed to the processing and drying of the compressed air at the production point before it is sent out to the facility and again at the point of use with the included, 5 micron, compressed air filter/separator that comes with each system.

Previously, the customer was using only the small, DC type fans to pull that hot, humid air through the panel which led to many corrosion issues and did not relieve the heat issue at all. With this new improvement, the end user no longer has to worry about such issues. Also, there is virtually no maintenance for this system which produces much longer up-times for the customer as there are no moving parts to wear out. Overall, it was a good recommendation in this case as the Cabinet Cooler System was handling multiple, previously negative issues. Now the pain has been taken away and the end user can move on to solving other, more pressing problems.

Neal Raker, Application Engineer
nealraker@exair.com

Humidity and Dust vs. EXAIR Cabinet Cooler

Often times, an end user or OEM will contact EXAIR for help with Cabinet Coolers. Most often the need comes from an installed cabinet experiencing overheating conditions.  But, there are a large number of applications seeking EXAIR Cabinet Coolers on the front end, before installation or even construction of the enclosure.

For example, an end user of our product overseas needed to cool a single circuit board to ensure continuous operation. Keeping the device cool and dry in an open environment would have proved difficult due to high local humidity.  So, an enclosure was constructed and an EXAIR Cabinet Cooler was used to not only regulate the air temperature, but also the stabilize relative humidity within the enclosure to 45%.

Cabinet Drawing

Another international end user sent me a number of schematics for a new installation.  The proposed enclosure is already in use in other locations, but is experiencing high rates of failure due to high levels of ambient dust.  Using the Cabinet Cooler Sizing Guide we were able to determine heat load and the proper Cabinet Cooler model number. A benefit beyond the cooling capacity of a Cabinet Cooler system, is the ability to place a positive purge on the enclosure. This purge is helpful in non-hazardous, dusty and dirty environments. The positive air flow into the enclosure prevents dust from entering (of course, any vents or filters will need to be sealed).

Whether the environment is humid or dusty, we have a suitable solution to cool an enclosure using EXAIR Cabinet Coolers. Contact an Application Engineer with any questions.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

%d bloggers like this: