Refrigerated Air Dryers

Whenever air gets compressed, it reduces the space for the water molecules to remain as a vapor; which causes condensation.  For this, compressed air dryers are an important part of a compressed air system.  They are designed to remove moisture to prevent condensation further downstream in the system.  The three main types of dryers are refrigerated, desiccant, and membrane. For this blog, I will cover the refrigerant-type compressed air dryers.

Compressed air dryers are rated with a dew point rating.  A dew point is the temperature at which the air has a relative humidity of 100%.  Since the air cannot become more saturated with water than 100%RH, water will condense and fall out like “rain”.  You can see this effect during the cool mornings when dew forms on the grass.  Compressed air dryers are designed to reduce the dew point temperature of your compressed air.  For a refrigerant type, they are near the dew point temperature of 38oF (3oC).  Like a refrigerator, they use refrigerant to cool the compressed air.  We cannot go below this temperature as it could form ice inside the dryer.  But, as long as the ambient temperature does not go below 38oF (3oC), liquid water will not be present in the pneumatic system. 

There are two main types of refrigerated air dryers; cycling and non-cycling.  Cycling type refrigerant air dryers will cool a liquid mass, generally a glycol-water mixture, to a set-point and turn off.  The liquid will go through an air-to-liquid heat exchanger to remove the heat from the compressed air.  Referring to the cycling action, when the liquid mass goes above the set point, the refrigeration system will restart and cool the liquid mass again.  The cycling refrigerant air dryers are more expensive, but they are more efficient. 

Non-cycling refrigerant air dryers are more common.  The refrigeration system continues to run through an air-to-air heat exchanger to cool the compressed air.  It is similar to your AC system in your car.  With this type of system, they are more susceptible to the environment, i.e., temperature, elevation, and humidity.  So, adjustments are required for proper installation. 

With both types of refrigerant dryers, the internal compressed air section is very similar.  They will have a filter separator to remove the liquid that is created from the condensation from the cold temperatures.  They also have an additional air-to-air heat exchanger.  This will provide two important features for the refrigerated air dryers.  As the cold air leaves the refrigerant section, it helps to cool the incoming compressed air.  This will make the system more efficient.  And as the hot incoming compressed air helps to warm the cold air leaving the dryer, it will stop the condensation of liquid water on the outside of the pipes.  Like the dew forming on the grass during cool mornings, the same will occur with the compressed air piping system. 

Moisture-laden compressed air can cause issues such as increased wear on the pneumatic tools, the formation of rust in piping and equipment, quality defects in painting processes, and frozen pipes in colder climates.  Regardless of what products you’re using at the point-of-use, a compressed air dryer is undoubtedly a critical component of the compressed air system.  Delivering clean, dry air to your EXAIR Products or other pneumatic devices will help to ensure a long life out of your equipment.  If you wish to discuss more about your compressed air system or how EXAIR can provide a more efficient way to use that compressed air, an Application Engineer will be happy to assist you. 

John Ball, CCASS


Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Photo: Grass morning dew by RuslanSikunovPixabay License

Heat Recovery from an Air Compressor

On the whole most of us are quite aware of the considerable savings that can be accomplished by wise use and recovery of energy.   One way that a plant can save substantially is to capture the energy that an electric motor adds to the compressed air from the air compressor.  As much as 80% to 93% of the electrical energy used by an industrial air compressor is converted to heat.  A properly designed heat recovery system can capture anywhere between 50% to 90% of this energy and convert it to useful energy.

The heat recovered is sufficient in most cases to use in supplemental ways such as heating water and space heating, however generally there is not enough energy to produce steam directly.

IngersollRand_R-series-R110
Ingersoll Rand Rotary Screw Compressor

 

Packaged air cooled rotary screw compressor lend themselves easily to heat recovery, supplemental heating or other hot air uses very well due to their enclosed design.  Since ambient air is directed across the compressors aftercooler and lubricant cooler where the heat can be easily collected from both the compressed air and the lubricant.

Packaged coolers are normally enclosed cabinets that feature integral heat exchangers and fans.  This type of system only needs ducting and an additional fan to minimize back pressure on the air compressors cooling fan.  This arrangement can be controlled with a simple thermostat operated vent on a hinge and when the extra heat is not required it can be ducted outside the facility.

The recovered energy can be used for space heating, industrial drying, preheating aspirated air for oil burners or  other applications requiring warm air.  Typically there is approximately 50,000 Btu/Hr of energy available from each 100 SCFM of capacity (at full load).  The temperature differential is somewhere between 30°F – 40°F above the air inlet temperature and the recovery efficiency is commonly found to be 80% – 90%.

We all know the old saying there is “no free lunch” and that principle applies here.  If the supply air is not from outside the plant a drop in the static pressure could occur in the compressor cabinet thereby reducing the efficiency of the compressor.  If you choose to use outside air for makeup, you might need some return air to keep the air above freezing to avoid compressor damage.

Heat recovery is generally not utilized with water cooled compressors since an extra stage of heat exchange is required and the efficiency of recovering that heat is normally in the 50% – 60% range.

To calculate annual energy savings:

Energy Savings (Btu/Yr) = 0.80 * compressor bhp * 2,545 Btu/bhp-hour * hours of operation.

If we consider a 50 HP compressor:

.080 * 50bhp * 2,545 Btu/bhp-hour * 2080 hrs/year =  211,744,000 Btu/yr

Where 0.80 is the recoverable heat as a percentage of the units output, 2,545 is the conversion factor.

Cost savings in dollars per year = [(energy savings in Btu/yr)/Btu/fuel) x ($/unit fuel)]/primary heater efficiency.

If you would like to discuss saving money by reducing compressed air demand and/or any EXAIR product,  I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Photo courtesy of Ingersoll Rand CC BY 3.0, https://en.wikipedia.org/w/index.php?curid=32093890

 

 

Intelligent Solutions for Electrical Enclosure Cooling Educational Webinar

Warmer temperatures are quickly approaching, which may seem like a welcome change for personal reasons, but in a processing line, the increased temperatures can wreak havoc on sensitive components found in an electrical control panel.

EXAIR Corporation will be hosting a FREE webinar titled “Intelligent Solutions for Electrical Enclosure Cooling” on May 23, 2018 at 2:00 PM EDT.

(click on the photo to register – it’s FREE!)

By attending this interactive session, you will learn the difference between the 3 most common NEMA ratings for electrical control panels found in an industrial setting, NEMA Type 12, 4 and 4X. We’ll provide examples of traditional, yet unreliable, methods of cooling and the concerns associated with using these types of devices.

Next we will explain how ignoring heat related issues can cause machines to shut down due to failed electrical components, resulting in lost production and increased maintenance costs, negatively affecting a company’s bottom line.

In closing, we’ll show how using an engineered, compressed air operated solution can reduce  downtime by providing a low cost, maintenance-free way to cool and purge control panels with no moving parts.

CLICK HERE TO REGISTER

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Intelligent Compressed Air: Refrigerant Dryers and How They Work

We’ve seen in recent blogs that Compressed Air Dryers are an important part of a compressed air system, to remove water and moisture to prevent condensation further downstream in the system.  Moisture laden compressed air can cause issues such as increased wear of moving parts due to lubrication removal, formation of rust in piping and equipment, quality defects in painting processes, and frozen pipes in colder climates.  The three main types of dryers are – Refrigerant, Desiccant, and Membrane. For this blog, we will review the basics of the Refrigerant type of dryer.

All atmospheric air that a compressed air system takes in contains water vapor, which is naturally present in the air.  At 75°F and 75% relative humidity, 20 gallons of water will enter a typical 25 hp compressor in a 24 hour period of operation.  When the the air is compressed, the water becomes concentrated and because the air is heated due to the compression, the water remains in vapor form.  Warmer air is able to hold more water vapor, and generally an increase in temperature of 20°F results in a doubling of amount of moisture the air can hold. The problem is that further downstream in the system, the air cools, and the vapor begins to condense into water droplets. To avoid this issue, a dryer is used.

Refrigerated Dryer
Fundamental Schematic of Refrigerant-Type Dryer

Refrigerant Type dryers cool the air to remove the condensed moisture and then the air is reheated and discharged.  When the air leaves the compressor aftercooler and moisture separator (which removes the initial condensed moisture) the air is typically saturated, meaning it cannot hold anymore water vapor.  Any further cooling of the air will cause the moisture to condense and drop out.  The Refrigerant drying process is to cool the air to 35-40°F and then remove the condensed moisture.  The air is then reheated via an air to air heat exchanger (which utilizes the heat of the incoming compressed air) and then discharged.  The dewpoint of the air is 35-40°F which is sufficient for most general industrial plant air applications.  As long as the compressed air stays above the 35-40°F temperature, no further condensation will occur.

The typical advantages of Refrigerated Dryers are-

  1.  – Low initial capital cost
  2.  – Relatively low operating cost
  3.  – Low maintenance costs

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB