Heat Transfer – How Energy Can Move

Heat. One word can bring to mind so many different things from cooking to sun tanning. But what is heat and how does it move. Heat is essentially a form of energy that flows in the form of changing temperatures; this form of energy will flow from high to low. When you describe something as being hot, you are actually describing that the item in question has a higher temperature than your hand thus the thermal (heat) energy is flowing from that object to your hand. This phenomenon is what is referred to as heat transfer. Heat transfer can be observed all the way down to the atomic scale with the property known as specific heat. Every molecule and atom can carry a set amount of energy which is denoted by specific heat; this value is the ration of energy (usually in Joules) divided by the mass multiplied by the temperature (J/g°C).

Energy moving through atoms in an object

But how does this heat move from object to object? On the atomic scale, the atoms are storing the energy which will cause electrons to enter into an excited state and rapidly switch between shells. When the electron returns back to a lower shell (closer to the nucleus) energy is released; the energy released is then absorbed by atoms at a lower energy state and will continue until the thermal energy is equal between the two objects. Heat has four fundamental modes of transferring energy from surface to surface and they are as follows:

Advection
Advection is the physical transport of a fluid from point A to point B, which includes all internal thermal energy stored inside. Advection can be seen as one of the simpler ways of heat transfer.

Conduction
Conduction can also be referred to as diffusion and is the transfer of energy between two objects that have made physical contact. When the two objects come into contact with each other thermal energy will flow from the object with the higher temp to the object with the lower temp. A good example of this is placing ice in a glass of water. The temperature is much lower than the room temperature therefore the thermal energy will flow from the water to the ice.

Convection
Convection is the transfer of thermal energy between an object and a fluid in motion. The faster the fluid moves the faster heat is transferred. This relies on the specific heat property of a molecule in order to determine the rate at which heat will be transferred. The low the specific heat of a molecule the faster and more volume of the fluid will need to move in order to get full affect of convection. Convection is used in modern ovens in order to get a more even heat through out the food while cooking.

Radiation
Radiation is the transfer of thermal energy through empty space and does require a material between the two objects. Going back to the how thermal energy is released from atoms; when the electron returns to a lower energy shell the energy is released in the form of light ranging from infrared light to UV light. Energy in the form of light can then be absorbed by an object in the form of heat. Everyone experiences radiation transfer every day when you walk outside; the light from the sun’s radiation is what keeps this planet habitable.

EXAIR’s engineered compressed air products are used every day to force air over hot surfaces to cool, as well as dry and/or blow off hot materials. Let us help you to understand and solve your heat transfer situations.

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The picture “Energy Transfer – Heat” by Siyavula Education is licensed under CC BY 2.0

Bifurcation Of Air – The Wonders of Science That Is The Vortex Tube

EXAIR has provided the benefits of vortex tube technology to the industrial world since 1983. Prior to that, French scientist George Ranque wrote about his discovery in 1928 calling it the tube tourbillion. But it wasn’t until German physicist Rudolf Hilsch’s research paper in 1945 on the wirbelrorhr or whirling tube, that the vortex tube entered the minds of commercial engineers. Nearly 60 years later, EXAIR is a leading provider for cooling products utilizing vortex tube technology.

More than 2,000 BTU/hr in the palm of your hand!

EXAIR Vortex Tubes produce a cold air stream down to -50° F and are a low cost, reliable, maintenance-free (there are no moving parts!) solution to a variety of spot cooling applications. These applications span a wide variety of industries and include cooling of electronic controls, soldered parts, machining operations, heat seals, environmental chambers, and gas samples. We’re always finding compelling new cooling opportunities for the vortex tubes.

How a Vortex Tube Works

So how does it produce the cooling stream? Compressed air is plumbed into the side port of the Vortex Tube where it is ejected tangentially into the internal chamber where the generator is located. The air begins flowing around the generator and spinning up to 1 million RPM toward the hot end (right side in the animation above) of the tube, where some hot air escapes through a control valve. Still spinning, the remaining air is forced back through the middle of the outer vortex. Through a process of conservation of angular momentum, the inner stream loses some kinetic energy in the form of HEAT to the outer stream and exits the vortex tube as COLD air on the other side.

The adjustable control valve adjusts what’s known as the cold fraction. Opening the valve reduces the cold air temperature and also the cold airflow volume. One can achieve the maximum refrigeration (an optimum combination of temperature and volume of flow) around an 80% cold fraction. EXAIR publishes performance charts in our catalog and online to help you dial into the right setting for your application, and you can always contact a real, live, Application Engineer to walk you through it.

EXAIR manufactures its vortex tubes of stainless steel for resistance to corrosion and oxidation. They come in small, medium and large sizes that consume from 2 to 150 SCFM and offer from 135 to 10,200 BTU/hr cooling capacity. Each size can generate several different flow rates, dictated by a small but key part called the generator. That generator can be changed out to increase or decrease the flow rate.

While operation and setup of an EXAIR Vortex Tube are easy, its performance will begin to  decrease with back pressure on the cold or hot air exhaust of over 3 PSIG. This is a key  when delivering the cold or hot airflow through tubes or pipes. They must be sized to minimize or eliminate back pressure.

The Vortex Tube is integrated into a variety of EXAIR products for specific applications, like the Adjustable Spot Cooler, the Mini Cooler, the Cold Gun Aircoolant System and our family of Cabinet Cooler Systems.

If you would like to discuss your next cooling application, please contact an Application Engineer directly and let our team lead you to the most efficient solution on the market.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Battling Heat Transfer

If you haven’t read many of my blogs then this may be a surprise. I like to use videos to embellish the typed word. I find this is an effective way and often gives better understanding when available.  Today’s discussion is nothing short of benefiting from a video.

We’ve shared before that there are three types of heat transfer, more if you go into sub-categories of each. These types are Convection,  Conduction, and Radiation. If you want a better understanding of those, feel free to check out Russ Bowman’s blog here.  Thanks to the US Navy’s nuclear power school, he is definitely one of the heat transfer experts at EXAIR.  If you are a visual learner like myself, check out the video below.

The Application Engineering team at EXAIR handles any call where customers may not understand what EXAIR product is best suited for their application. A good number of these applications revolve around cooling down a part, area, electrical cabinet, or preventing heat from entering those areas.  Understanding what type of heat transfer we are going to be combating is often helpful for us to best select an engineered solution for your needs.

Other variables that are helpful to know are:

Part / cabinet dimensions
Material of construction
External ambient temperature
If a cabinet, the internal air temperature
Maximum ambient temperature
Desired temperature
Amount of time available
Area to work with / installation area

Understanding several of these variables will often help us determine if we need to look more towards a spot cooler that is based on the vortex tube or if we can use the entrained ambient air to help mitigate the heat transfer you are seeing.

If you would like to discuss cooling your part, electrical cabinet, or processes, EXAIR is available. Or if you want help trying to determine the best product for your process contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Video Source: Heat Transfer: Crash Course Engineering #14, Aug 23, 2018 – via CrashCourse – Youtube – https://www.youtube.com/watch?v=YK7G6l_K6sA

Heat Transfer – 3 Types

When you have two objects and they are of different temperatures, we know from experience that the hotter object will warm up the cooler one, or conversely, the colder object will cool down the hotter one.  We see this everyday, such as ice cooling a drink, or a fan cooling a person on a hot day.

The Second Law of Thermodynamics says that heat (energy) transfers from an object of a higher temperature to an object of a lower temperature. The higher temperature object has atoms with higher energy levels and they will move toward the lower energy atoms in order to establish an equilibrium. This movement of heat and energy is called heat transfer. There are three common types of heat transfer.13580963114_f222b3cdd9_z

Heat Transfer by Conduction

When two materials are in direct contact, heat transfers by means of conduction. The atoms of higher energy vibrate against the adjacent atoms of lower energy, which transfers energy to the lower energy atoms, cooling the hotter object and warming the cooler object. Fluids and gases are less heat conductive than solids (metals are the best heat conductors) because there are larger distances between atoms.  Solids have atoms that are closer together.

Heat Transfer by Convection

Convection describes heat transfer between a surface and a liquid or gas in motion. The faster the fluid or gas travels, the more convective heat transfer that occurs. There are two types of convection:  natural convection and forced convection. In natural convection, the motion of the fluid results from the hot atoms in the fluid moving upwards and the cooler atoms in the air flowing down to replace it, with the fluid moving under the influence of gravity. Example, a radiator puts out warm air from the top, drawing in cool air through the bottom. In forced convection, the fluid, air or a liquid, is forced to travel over the surface by a fan or pump or some other external source. Larger amounts of heat transfer are possible utilizing forced convection.

Heat Transfer by Radiation

Radiation refers to the transfer of heat through empty space. This form of heat transfer does not require a material or even air to be between the two objects; radiation heat transfer works inside of and through a vacuum, such as space. Example, the radiation energy from the sun travels through the great distance through the vacuum of space until the transfer of heat warms the Earth.

EXAIR‘s engineered compressed air products are used every day to force air over hot surfaces to cool, as well as dry and/or blow off hot materials. Let us help you to understand and solve your heat transfer situations.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can improve your process, feel free to contact EXAIR, myself, or one of our other Application Engineers. We can help you determine the best solution!

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

The picture “Energy Transfer – Heat” by Siyavula Education is licensed under CC BY 2.0