Battling Heat Transfer

If you haven’t read many of my blogs then this may be a surprise. I like to use videos to embellish the typed word. I find this is an effective way and often gives better understanding when available.  Today’s discussion is nothing short of benefiting from a video.

We’ve shared before that there are three types of heat transfer, more if you go into sub-categories of each. These types are Convection,  Conduction, and Radiation. If you want a better understanding of those, feel free to check out Russ Bowman’s blog here.  Thanks to the US Navy’s nuclear power school, he is definitely one of the heat transfer experts at EXAIR.  If you are a visual learner like myself, check out the video below.

The Application Engineering team at EXAIR handles any call where customers may not understand what EXAIR product is best suited for their application. A good number of these applications revolve around cooling down a part, area, electrical cabinet, or preventing heat from entering those areas.  Understanding what type of heat transfer we are going to be combating is often helpful for us to best select an engineered solution for your needs.

Other variables that are helpful to know are:

Part / cabinet dimensions
Material of construction
External ambient temperature
If a cabinet, the internal air temperature
Maximum ambient temperature
Desired temperature
Amount of time available
Area to work with / installation area

Understanding several of these variables will often help us determine if we need to look more towards a spot cooler that is based on the vortex tube or if we can use the entrained ambient air to help mitigate the heat transfer you are seeing.

If you would like to discuss cooling your part, electrical cabinet, or processes, EXAIR is available. Or if you want help trying to determine the best product for your process contact us.

Brian Farno
Application Engineer


Video Source: Heat Transfer: Crash Course Engineering #14, Aug 23, 2018 – via CrashCourse – Youtube –

Heat Transfer – 3 Types

When you have two objects and they are of different temperatures, we know from experience that the hotter object will warm up the cooler one, or conversely, the colder object will cool down the hotter one.  We see this everyday, such as ice cooling a drink, or a fan cooling a person on a hot day.

The Second Law of Thermodynamics says that heat (energy) transfers from an object of a higher temperature to an object of a lower temperature. The higher temperature object has atoms with higher energy levels and they will move toward the lower energy atoms in order to establish an equilibrium. This movement of heat and energy is called heat transfer. There are three common types of heat transfer.13580963114_f222b3cdd9_z

Heat Transfer by Conduction

When two materials are in direct contact, heat transfers by means of conduction. The atoms of higher energy vibrate against the adjacent atoms of lower energy, which transfers energy to the lower energy atoms, cooling the hotter object and warming the cooler object. Fluids and gases are less heat conductive than solids (metals are the best heat conductors) because there are larger distances between atoms.  Solids have atoms that are closer together.

Heat Transfer by Convection

Convection describes heat transfer between a surface and a liquid or gas in motion. The faster the fluid or gas travels, the more convective heat transfer that occurs. There are two types of convection:  natural convection and forced convection. In natural convection, the motion of the fluid results from the hot atoms in the fluid moving upwards and the cooler atoms in the air flowing down to replace it, with the fluid moving under the influence of gravity. Example, a radiator puts out warm air from the top, drawing in cool air through the bottom. In forced convection, the fluid, air or a liquid, is forced to travel over the surface by a fan or pump or some other external source. Larger amounts of heat transfer are possible utilizing forced convection.

Heat Transfer by Radiation

Radiation refers to the transfer of heat through empty space. This form of heat transfer does not require a material or even air to be between the two objects; radiation heat transfer works inside of and through a vacuum, such as space. Example, the radiation energy from the sun travels through the great distance through the vacuum of space until the transfer of heat warms the Earth.

EXAIR‘s engineered compressed air products are used every day to force air over hot surfaces to cool, as well as dry and/or blow off hot materials. Let us help you to understand and solve your heat transfer situations.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can improve your process, feel free to contact EXAIR, myself, or one of our other Application Engineers. We can help you determine the best solution!

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB


The picture “Energy Transfer – Heat” by Siyavula Education is licensed under CC BY 2.0

Heat Recovery from an Air Compressor

On the whole most of us are quite aware of the considerable savings that can be accomplished by wise use and recovery of energy.   One way that a plant can save substantially is to capture the energy that an electric motor adds to the compressed air from the air compressor.  As much as 80% to 93% of the electrical energy used by an industrial air compressor is converted to heat.  A properly designed heat recovery system can capture anywhere between 50% to 90% of this energy and convert it to useful energy.

The heat recovered is sufficient in most cases to use in supplemental ways such as heating water and space heating, however generally there is not enough energy to produce steam directly.

Ingersoll Rand Rotary Screw Compressor


Packaged air cooled rotary screw compressor lend themselves easily to heat recovery, supplemental heating or other hot air uses very well due to their enclosed design.  Since ambient air is directed across the compressors aftercooler and lubricant cooler where the heat can be easily collected from both the compressed air and the lubricant.

Packaged coolers are normally enclosed cabinets that feature integral heat exchangers and fans.  This type of system only needs ducting and an additional fan to minimize back pressure on the air compressors cooling fan.  This arrangement can be controlled with a simple thermostat operated vent on a hinge and when the extra heat is not required it can be ducted outside the facility.

The recovered energy can be used for space heating, industrial drying, preheating aspirated air for oil burners or  other applications requiring warm air.  Typically there is approximately 50,000 Btu/Hr of energy available from each 100 SCFM of capacity (at full load).  The temperature differential is somewhere between 30°F – 40°F above the air inlet temperature and the recovery efficiency is commonly found to be 80% – 90%.

We all know the old saying there is “no free lunch” and that principle applies here.  If the supply air is not from outside the plant a drop in the static pressure could occur in the compressor cabinet thereby reducing the efficiency of the compressor.  If you choose to use outside air for makeup, you might need some return air to keep the air above freezing to avoid compressor damage.

Heat recovery is generally not utilized with water cooled compressors since an extra stage of heat exchange is required and the efficiency of recovering that heat is normally in the 50% – 60% range.

To calculate annual energy savings:

Energy Savings (Btu/Yr) = 0.80 * compressor bhp * 2,545 Btu/bhp-hour * hours of operation.

If we consider a 50 HP compressor:

.080 * 50bhp * 2,545 Btu/bhp-hour * 2080 hrs/year =  211,744,000 Btu/yr

Where 0.80 is the recoverable heat as a percentage of the units output, 2,545 is the conversion factor.

Cost savings in dollars per year = [(energy savings in Btu/yr)/Btu/fuel) x ($/unit fuel)]/primary heater efficiency.

If you would like to discuss saving money by reducing compressed air demand and/or any EXAIR product,  I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Photo courtesy of Ingersoll Rand CC BY 3.0,



Methods Of Heat Transfer

“Nothing happens until something moves.”
-Albert Einstein

These five words are the foundation on which the science of physics is built upon. This statement not only applies to the things we can see, but to those we can’t…like heat transfer.

OK; technically, we CAN visually observe the EFFECTS of heat transfer…that’s called “reading a thermometer.” But the actual mechanism of heat transfer takes place at a molecular level, and concerns the rate of motion of those molecules: the higher the rate of molecular motion, the higher the heat of the material. Hence, the higher the rate of CHANGE of that molecular motion, the higher the heat transfer rate is.

All you need for heat transfer to occur is a difference in temperature between two materials. Contact, or even proximity, helps…but not always. More on that in a minute. And keeping at least one of the materials in motion can help maintain the temperature differential. We’ll unpack that a little more too.

Let’s start with the three ways that heat is transferred…what they are, and how they work:


What it is: The transfer of heat between materials that are in physical contact with each other.

How it works: If you’ve ever touched a hot burner on a stove, you’ve successfully participated in the process of conduction heat transfer.


What it is: The transfer of heat through a fluid medium, enhanced by the motion of the fluid.

How it works: If you’ve ever boiled water in a pan on a hot stove burner, you’ve successfully participated, again, in the process of conduction heat transfer (as the burner heats the pan) AND convection (as the heated water in the bottom of the pan both transfers heat through its volume, and moves to the surface.)


What it is: Remember what I said earlier about how you don’t always need contact or proximity for heat transfer? Well, this is it…the transfer of heat through empty space, via electromagnetic waves.

How it works: If you didn’t actually TOUCH the hot stove burner, but felt your hand getting hot as it hovered, then you’ve successfully participated in the process of radiation heat transfer. OK; it’s a little convection too, since the air between the burner and your hand was also transferring some of that heat. The best example of STRICTLY radiation heat transfer I can think of is the sun’s rays…they literally pass through 93 million miles of empty space, and make it quite warm on a nice sunny day here on Earth.

Regardless of how material, or an object, or a system receives heat, engineered compressed air products can be used to efficiently and effectively remove that heat.  For the record, they employ the principles of both conduction and convection.  If you’d like to discuss a heat transfer application, and the way(s) that an EXAIR product can work in it, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook