It’s Getting Hot In Here!

Okay, if you did not finish the song lyrics when reading the title, it’s okay, we can still be friends. In all actuality, the temps are warming up here in the MidWest as we prepare for our false Spring as indicated by the freezing temps and snow we received earlier this week. There is one thing that has stayed constant and that is the methods of heat generation.

1 – Kettle-convection-conduction-radiation

Heat generation is a result of energy conversion. The conversion of energy to do work, whether it is actual voltage going through a transformer that operates a neon sign to light up the roadside sky or energy from a hydraulic ram that is compacting recycled paper into a bundle and the hydraulic fluid is being pressed in and out of cylinders from a pump, all of it will have some form of a heat byproduct. This heat then gets transferred and how it is transferred can be helpful to know.

2 – Energy Transfer – Heat

At the molecular level, atoms store the energy that will cause electrons to enter into an excited state and rapidly switch between shells. When the electron returns to a lower shell (closer to the nucleus), energy is released; the energy released is then absorbed by atoms at a lower energy state and will continue until the thermal energy is equal between the two objects. Heat has four fundamental modes of transferring energy from surface to surface, and they are as follows:

Advection
Advection is the physical transport of fluid from point A to point B, which includes all internal thermal energy stored inside. Advection can be seen as one of the simpler ways of heat transfer.

Radiation
Radiation is the transfer of thermal energy through empty space and does require a material between the two objects. Going back to how thermal energy is released from atoms when the electron returns to a lower energy shell, the energy is released in the form of light ranging from infrared light to UV light. Energy in the form of light can then be absorbed by an object in the form of heat. Everyone experiences radiation transfer every day when you walk outside; the light from the sun’s radiation is what keeps this planet habitable.

Conduction
Conduction can also be referred to as diffusion and is the transfer of energy between two objects that have made physical contact. When the two objects come into contact with each other, thermal energy will flow from the object at the higher temp to the object at the lower temp. A good example of this is placing ice in a glass of water. The temperature is much lower than the room temperature. Therefore, thermal energy will flow from the water to the ice.

Convection
Convection is the thermal energy transfer between an object and a fluid in motion. The faster the fluid moves, the faster heat is transferred. This relies on the specific heat property of a molecule to determine the rate at which heat will be transferred. When a molecule has a lower specific heat, it takes faster motion and larger volumes to achieve the full effect of convection transfer. Convection is used in modern ovens to get a more even heat throughout the food while cooking.

No matter how the heat is transferred to an object, if it needs to be cooled there is a good chance that one of our Application Engineers has approached a similar issue and can help. To discuss, contact us, and we will walk through the best method to eliminate the heat you need to.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 – “Kettle-convection-conduction-radiation” by P.wormer is licensed under CC SA 3.0
2– “Energy Transfer – Heat” by Siyavula Education is licensed under CC BY 2.0

Leave a Reply