Reduce Sound Levels In Less Than A Minute

Okay, I will admit, the title may be a tad bit leading.  The fact is, it can be done.  I speak to customers almost daily who are struggling with the noise levels produced from open pipe blowoffs.  With Noise Induced Hearing Loss (NIHL) a significant problem among manufacturing workers, reducing the noise form compressed air can be a simple solution and contribute toward reducing overall noise exposure levels. Many of these calls and emails revolve around reducing these exact noise levels, sometimes the open pipes have existing threads on them to install the solution immediately.

To reduce these noise levels, we need to simply reduce the amount of energy that is being expelled through the pipe. How do we do this you might ask?  The use of an air nozzle will reduce the energy being dispersed from an open pipe.  This will result in lower air consumption as well as lower sound levels while actually increasing velocity as the pipe will maintain higher operating pressures. Be cautious about the air nozzle you choose, however, they are not all created equal. EXAIR’s engineered air nozzles are among the quietest and most efficient air nozzles available.

Family of Nozzles

What size pipes can we fit nozzles to?  That’s a great question.  We have nozzles that range from a 4mm straight thread all the way up to 1-1/4″ NPT thread.  This also includes nearly any size in between especially the standard compressed air piping sizes.  For instance, a 1/4″ Sched. 40 pipe that has 1/4″ MNPT threads on it can easily produce over a 100 dBA noise level from 3 feet away.  This can easily be reduced to below 80 dBA from 3′ away by utilizing one of our model 1100 Super Air Nozzles.  All it takes is a deep well socket and ratchet with some thread sealant.

This doesn’t just lower the sound level though, it reduces the amount of compressed air expelled through that open pipe by creating a restriction on the exit point.  This permits the compressed air to reach a higher line pressure causing a higher exit velocity and due to the engineering within the nozzle, this will also eliminate dangerous dead-end pressure and complies with OSHA standard 29 CFR 1910.242(b).

Easy Install

All in all, a 30-second install can make an operator’s work station considerably quieter and potentially remove the need for hearing protection.  If you would like to discuss how to lower noise levels in your facility, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

50 Years of Earth Day – Happy Earth Day!

Today marks the 50th anniversary of Earth Day and it will be observed in over 190 countries. For EXAIR, this year marks our 37th year helping compressed air users save compressed air energy and electrical resources. And the 37th year for improving our own efficiencies and processes in order to reduce waste. Because your volunteer opportunities may not be available this year, Earthday.org has gone digital for 2020 and is providing ways to participate via your computer.

EXAIR remains committed to a minimal footprint and continues to focus on manufacturing our products with little impact and doing our part to help protect our planet. We are proud to manufacture efficient products, implement processes and programs throughout our facility to help use our resources wisely and recycle everything we possibly can.

We manufacture and sell Intelligent Compressed Air Products that are specifically designed to reduce the use of compressed air throughout facilities.  On top of that, when you purchase an EXAIR product it will arrive in fully recyclable packaging and, in most cases, is made from a material that will be recyclable should it reach a point it is no longer useful.

Over the past years we continually look for improvement opportunities within our systems and processes. Recently we have…

  • Over the past year, EXAIR recycled 1300 yards of paper and cardboard.
  • Recycled 100% of our cardboard and mixed paper products. Of the waste we place into our trash dumpsters – 80% is recycled and 20% is sent to the landfill.
  • Recycled 100% of the metal scrap from our machining processes. Improvements in these processes has reduced scrap rates, which equates to 5.5 tons of recycled metal.
  • Used our very own Chip Trapper Systems in our manufacturing areas to extend the water-soluble coolant life from 6 weeks per changeover to 6 months per changeover. Keeping our coolant clean allows us to minimize the total amount of wastewater we recycle each year.
  • Further reduced our wastewater for reclamation by another 25% compared to last year.
  • Minimized our own compressed air use by 1 million cubic feet per year
  • Made improvements to the efficiency of our computers and computer servers which require fewer Kilowatt hours (KWH) per day

Another waste reducing factor that has proven to work out well for EXAIR is asking every customer if they accept digital invoices rather than requiring them to be printed and mailed.  We have been able to eliminate over 91% of all printed and mailed invoices. This helps to reduce our resources used as well as the amount of materials that are possibly turned into solid wastes at customer facilities. This also prevents the gas and vehicles necessary to deliver all of these invoices by mail.

Adding to the efforts above, we continue to maintain RoHS compliance on all electronic products, as well as actively track our supply chains to ensure no Conflict Minerals are being sourced and used in our products.

If you have any questions on how we can help your facility reduce their volume of compressed air or why we continue to reduce our wastes and increase our recycling efforts, contact us.

Happy Earth Day from EXAIR!

 

 

Image Credit: NASA/NOAA/GSFC/Suomi NPP/VIIRS/Norman Kuring

Sound: What Is It … More Importantly, Weighted Scales of Frequencies

We’ve blogged about sound and what exactly it is before, see the link. Understanding that sound is vibration traveling through the air which it is utilizing as an elastic medium.  Well, rather than me continue to write this out, I found a great video to share that is written in song to better recap how sound is created.

Now that we have that recap and understand better what sound is let’s dig a little deeper to better understand why some sounds may appear louder to a person when they may not appear different on a sound scale that is shown by something like a Digital Sound Level Meter.

Loudness is how a person perceives sound and this is correlated to the sound pressure of the frequency of the sound in question.  The loudness is broken into three different weighing scales that are internationally standardized. Each of these scales, A, C, and Z apply a weight to different frequency levels.

  1. The most commonly observed scale here in the USA is the A scale. A is the OSHA selected scale for industrial environments and discriminates against low frequencies greatly.
  2. Z is the zero weighting scale to keep all frequencies equal, this scale was introduced in 2003 as the international standard.
  3. C scale does not attenuate these lower frequencies as they are carrying the ability to cause vibrations within structures or buildings and carry their own set of risks.

To further the explanation on the A-weighted scale, the range of frequencies correlates to the common human hearing spectrum which is 20 Hz to 20kHz. This is the range of frequencies that are most harmful to a person’s hearing and thus were adopted by OSHA. The OSHA standard, 29 CFR 191.95(a), that corresponds to noise level exposure permissible can be read about here on our blog as well.

When using a handy tool such as the Digital Sound Level Meter to measure sound levels you will select whether to use the dBA or dBC scale.  This is the decibel reading according to the scale selected. Again, for here in the USA you would want to focus your measurements on the dBA scale. It is suggested to use this tool at a 3′ distance or at the known distance an operator’s ears would be from the noise generation point.

Many of EXAIR’s engineered compressed air products have the ability to decrease sound levels in your plant. If you would like to discuss how to best reduce sound levels being produced within your facility, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

1 – Fun Science: Sound – @charlieissocoollike – https://youtu.be/xH8mT2IQz7Y

 

OSHA Safety, Efficiency, and Flexibility from Engineered Compressed Air Nozzles

Throughout my years here at EXAIR as well as my years in the metal cutting industry, one of the most common quick fixes I see in production environments for compressed air blowoffs in a process is an open copper pipe that is contorted into a position, pinched at the end, and more often than not kinked from repositioning. I call this a quick fix because it does blow air, more often than not it will get production up and running, but it does not meet or exceed OSHA standards for safety and is an inefficient use of compressed air. [OSHA Standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a)]

EXAIR Super Air Nozzles that are easy replacements for 1/8″ and 1/4″ Copper pipe.

The first engineered solution I could offer to prevent any costly OSHA fines and to lower the ambient noise level caused by these blowoffs is to implement an EXAIR Engineered Air Nozzle. We offer a wide variety of nozzles ranging from a 4mm thread up to a 1-1/4″ NPT thread. With this wide range comes a wide variety of forces and flows as well.

Today, I would like to focus on the common sizes of copper blowoffs which are 1/8″ and 1/4″. To simply adapt a nozzle to copper line a compression fitting can be easily sourced, often from EXAIR, and convert the copper tubing in place to an NPT threaded outlet for easy installation of an EXAIR nozzle. More often than not a compression fitting is how the copper tubing is tied into the machine’s compressed air system.

We have a total of 37 engineered air nozzles from stock that will easily fit a compression fitting which goes to a 1/8″ NPT or 1/4″ NPT thread. Several of these are also adjustable through a gap adjustment or a patented shim adjustment to vary the force and flow out of the nozzle from a forceful blast to a gentle breeze in order to me your application needs. What if you want to eliminate the copper line and compressions fittings?

EXAIR offers a replacement option for the ever-common copper tube that is more robust and does not require a tool to be properly repositioned. We currently offer twenty-four different models of our Stay Set Hoses that can be easily connected to any of the nozzles mentioned above. The lengths that are available are 6″ (152mm), 12″ (305mm), 18″ (457mm), 24″ (610mm), 30″ (762mm) and 36″ (914mm).

These lengths are available with two separate connection options. 1/4″ MNPT x 1/4″ MNPT or 1/4″ MNPT x 1/8″ FNPT. The Stay Set Hoses can easily be bent by hand into position for a precise placement of the air pattern from the engineered nozzle attached to it. This permits operators a tool free adjustment for fast and reliable location to keep production up and running. They can also be paired with Magnetic Bases.

EXAIR Magnetic Bases are available in single outlet or dual outlet configurations. Both include a 100 lb. pull magnet that will hold tight to any ferrous metal surface for secure mounting, as well as a quick 1/4 turn miniature valve on each outlet. This permits independent customization of the force our of each output for the dual outlet mag base. Each magnetic base offers a 1/4″ FNPT inlet port and outlet port. We offer these with any of combination of the Stay Set Hoses mentioned above as well as any of the Super Air Nozzles mentioned above.

Mag Bases come with one or two outlets. Stay Set Hoses come in lengths from 6″ to 36″.

The Super Air Nozzles, Stay Set Hoses, and Magnetic Bases can be easily combined before they ship to your facility to make a complete blowoff station that is easily installed and adjusted to fit any of the needs your process may have for a point of use blowoff. If you want help determining how much compressed air you would save by replacing the open pipe blowoffs with an engineered solution like a Stay Set Magnetic Base Blowoff System please contact myself or any Application Engineer here at EXAIR.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF