Controlling Compressed Air can be Easy, and Save Thousands of Dollars

The history of automated controls can be traced back to inventors in ancient Greece & Egypt, who sought ways to keep more accurate track of time than afforded by sundials and hourglasses.  Their efforts, dating as far back as 300BC, produced devices actuated by water flow, which is actually quite reliable and repeatable: a set amount of water will flow via gravity through a fixed conduit in the exact same amount of time, every time.  These were in fairly common use until the invention of the mechanical clock in the 14th century.

The Industrial Revolution grew the need for automated processes exponentially…the need to control objects or tooling in motion, fluid flow, temperature, and pressure, just to name a few.  As time passed, the sky was literally the limit: modern aircraft & spacecraft rely on a staggering amount of automated processes from production to operation.

All throughout history, though, the benefits of automation remain the same: making processes more efficient.  That’s where the EXAIR EFC Electronic Flow Control comes in, for automating processes involving compressed air use, by turning air flow off when it’s not needed.  In fact, not only do they provide simple on/off control to blow only when a part is “seen” by the photoelectric sensor, there are eight distinct modes to incorporate delay on or off, flicker on or off, signal on/off delay, interval, or “One-Shot,” where the sensor detects the part, delays opening the valve per the timer setting, and blows for one second.

EFC Electronic Flow Control Systems are already assembled & wired for quick & easy installation.

The EXAIR EFC Electronic Flow Control is a true “plug and play” solution for automating a compressed air application.  Mount the sensor, plumb the valve, plug it in, and you’re ready to go.  There’s no complicated PLC wiring or programming, although the aforementioned mode selections do offer a great deal of flexibility other than “on when the sensor sees it; off when it doesn’t” operation, if desired.  Here are some prime examples of that flexibility, and the monetary benefits due to the compressed air consumption savings:

(Left) On/Off Delay setting used in tank refurbishment application to operate a “halo” of Super Air Knives for blow off as tanks exit oven where old paint is burnt off – $3,393 annual air savings. (Center) Interval setting actuates a Super Ion Air Knife for flat panel display dust blow off/static elimination – $2,045 annual air savings. (Right) Interval setting actuates a “halo” of Super Ion Air Knives to clean & remove static charge from plastic automotive bumper covers prior to painting – $5012 annual savings.

If you’d like to find out more about the EFC Electronic Flow Control can save you time, air, and money, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Why Start a Leak Prevention Program?

All compressed air systems will have some amount of leakage. It is a good idea to set up a Leak Prevention Program.  Keeping the leakage losses to a minimum will save on compressed air generation costs, and reduce compressor operation time which can extend its life and lower maintenance costs.

The Compressed Air Challenge estimates an individual compressed air leak can cost thousands of dollars per year when using $0.07/kWh.

  • 1/16″ diameter hole in excess of $700/year
  • 1/8″ hole in excess of $2900/year
  • 1/4″ hole in excess of $11,735 per year

There are generally two types of leak prevention programs:

  • Leak Tag type programs
  • Seek-and-Repair type programs

Of the two types, the easiest would be the Seek-and-Repair method.  It involves finding leaks and then repairing them immediately. For the Leak Tag method, a leak is identified, tagged, and then logged for repair at the next opportune time.

A successful Leak Prevention Program consists of several important components:

  • Document your Starting Compressed Air Use – knowing the initial compressed air usage will allow for comparison after the program has been followed for measured improvement.
  • Establishment of initial leak loss – See this blog for more details.
  • Determine the cost of air leaks – One of the most important components of the program. The cost of leaks can be used to track the savings as well as promote the importance of the program. Also a tool to obtain the needed resources to perform the program.
  • Find the leaks – Leaks can be found using many methods.  Most common is the use of an Ultrasonic Leak Detector, like the EXAIR Model 9061.  See this blog for more details. An inexpensive handheld meter will locate a leak and indicate the size of the leak.

    Model 9061
    Model 9061
  • Record the leaks – Note the location and type, its size, and estimated cost. Leak tags can be used, but a master leak list is best.  Under Seek-and-Repair type, leaks should still be noted in order to track the number and effectiveness of the program.
  • Plan to repairs leaks – Make this a priority and prioritize the leaks. Typically fix the biggest leaks first, unless operations prevent access to these leaks until a suitable time.
  • Record the repairs – By putting a cost with each leak and keeping track of the total savings, it is possible to provide proof of the program effectiveness and garner additional support for keeping the program going. Also, it is possible to find trends and recurring problems that will need a more permanent solution.
  • Compare and publish results – Comparing the original baseline to the current system results will provide a measure of the effectiveness of the program and the calculate a cost savings. The results are to be shared with management to validate the program and ensure the program will continue.
  • Repeat As Needed – If the results are not satisfactory, perform the process again. Also, new leaks can develop, so a periodic review should be performed to achieve and maintain maximum system efficiency.

An effective compressed air system leak prevention and repair program is critical in sustaining the efficiency, reliability, and cost effectiveness of an compressed air system.

If you have questions about a Leak Prevention Program or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Free Money! Flat Super Air Nozzles Qualify for Energy Incentive

The patented design of EXAIR’s 1” and 2” Flat Super Air Nozzles makes them a highly efficient option when seeking a powerful, flat airflow. A precise air gap across the width of the nozzle provides a forceful stream of high velocity, laminar airflow without consuming high amounts of compressed air and also resulting in a greatly reduced sound level compared to some of the alternative flat nozzles available in the market.

Flat SAN not dumb picture
EXAIR’s Flat Super Air Nozzles have been blowing away the competition since 2003.

Did you know that upgrading to an efficient engineered air nozzle, such as the 1” or 2” Flat Super Air Nozzle, can make you eligible for an incentive from your energy provider? Similar to other energy-saving programs for upgrading to LED light bulbs or high-efficiency HVAC systems, these are made available to you as an incentive to start using more energy efficient products.

The energy costs associated with the generation of compressed air, often referred to in industry as a 4th utility, can make it expensive. These programs are offered to encourage you to use engineered products that are more energy efficient due to the reduction in compressed air consumption. Essentially, they’re offering you free money to implement a solution that will also save you money. It almost sounds too good to be true!! But these products, after implementation and receiving the incentive, will continue to save you money year after year.

The US Department of Energy, in conjunction with the NC Clean Energy Technology Center, provides a website that allows you to search the various programs available to you in your state. The DSIRE® website allows you to select your state, then select your energy provider to determine what programs are offered.

In Southwest Ohio, Duke Energy provides an incentive that offers $40 USD each per engineered air nozzle that is installed. When replacing open pipe or tube, these nozzles generally pay for themselves relatively quickly. But, when combined with a $40 USD rebate, that return on investment happens even quicker!!!

Don’t leave free money on the table. If you’re using open pipe or tube, or inefficient plastic flat nozzles, replace them with an engineered air nozzle from EXAIR. If you need help determining what rebate programs are available to you in your area, we’re also here to help. Contact an EXAIR Application Engineer today!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Happy New Year!

Happy New Year from everyone at EXAIR!

Here’s wishing you the gift of peace and prosperity throughout 2020

Thank you for contributing to our success in 2019. We look forward to increasing your compressed air efficiency and solving your process problems throughout 2020.

EXAIR will be closed Monday and Tuesday Dec. 30 and 31 and Wednesday Jan. 1 to be with our families and friends.

image by j4p4n, Public Domain

Six Steps to Optimizing Compressed Air: Step 4, Turn it Off When Not in Use

Step 4 of the Six Steps to Optimizing your compressed air is to turn off your compressed air when it is not in use. This step can be done using two simple methods either by using manual controls such as ball valves or automated controllers such as solenoid valves. Manual controls are designed for long use and when switching on and off are infrequent. Ball Valves are one of the most commonly used manual shut offs for compressed air and other fluids.

Automated controllers allow your air flow to be tied into a system or process and turn on or off when conditions have been met. Solenoid valves are the most commonly used automated control device as they operate by using an electric current to open and close the valve mechanism within. Solenoid valves are some of the more versatile flow control devices due to the fact that they open and close almost instantaneously. Solenoid valves can be used as manual controls as well by wiring them to a switch or using simple programming on a PLC to turn the valve on or off using a button.

EXAIR’s Solenoid Valves
EXAIR’s Electronic Flow Controller (EFC)

 

Some good examples of automated controllers are EXAIR’s Electronic Flow Controller (a.k.a. EFC) and EXAIR’s Thermostat controlled Cabinet Coolers.  

The EFC system uses a photo eye to detect when an object is coming down the line and will turn on the air for a set amount of time of the users choosing. This can be used to control the airflow for all of EXAIR’s products. EXAIR’s Thermostat controlled Cabinet Coolers are used to control the internal temperature of a control cabinet or other enclosures. This is done by detecting the internal temperature of your cabinet and when it has exceeded a temperature which could damage electrical components it will open the valve until a safe temperature has been reached, then turn off.    

By turning off your compressed air, whether it be with manual or automated controllers, a company can minimize wasted compressed air and extend the longevity of the air compressor that is used to supply the plants air. The longevity of the air compressor is increased due to reduced run time since it does not need to keep up with the constant use of compressed air. Other benefits include less use of compressed air and recouped cost of compressed air. 

EXAIR’s Ball Valves sizes 1/4″ NPT to 1-1/4″ NPT

If you have questions about our compressed air control valves or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Save Thousands of Dollars – Just Like You Did When Upgrading Your Light Bulbs

lightbulb-1875247_1920

The cheapest and easiest solution isn’t always necessarily the best. The best example I like to use to highlight this is the incandescent light bulb. They’re definitely the cheapest to buy, but over the useful life it will cost more in electricity to operate and it won’t last nearly as long as an LED light bulb. When you compare the costs of electricity as well as the lifespan of an incandescent bulb, it becomes quite clear that the initial price difference between the two will be quickly recouped over the lifetime of the LED bulb. Once it pays for itself, it doesn’t just stop saving you electricity. These savings continue to compound.

The same can be said when comparing the Super Air Knife to a commonly seen homemade alternative, drilled pipe. While it only takes a matter of minutes to drill a few holes into a section of pipe, the operating costs (electricity required to generate the compressed air) are significantly higher than that of the Super Air Knife. In addition, it’s not nearly as effective and is considered unsafe under OSHA 29 CFR 1910.242 (b) and depending on operating pressure is likely also considered dangerous due to the high sound levels as outlined in OSHA 29 CFR 1910.95(a).

Air exiting out of drilled holes in a pipe will create a turbulent airstream. This turbulence not only contributes to the high sound level but it’s ability to entrain surrounding ambient air is minuscule. The air entrainment ratio of a compressed air solution refers to the relationship between supplied compressed air and the free ambient air that is brought into the primary airstream. The higher the amplification ratio, the less compressed air necessary to complete a similar task. For a drilled pipe, the amplification ratio is generally around 3:1. With the Super Air Knife, this is dramatically increased with an amplification ratio of 40:1.

SAK vs drilled pipe

The Super Air Knife has a precisely set air gap across the full length of the knife, allowing for an efficient and quiet laminar airstream. When compared to a drilled pipe, the air consumption is dramatically reduced as is the sound level. For example, let’s take an 18” section of drilled pipe, with 1/16” diameter holes spaced out every ½”. At 80 PSIG, each hole consumes 3.8 SCFM. With a total of 37 holes, this equates to a total of 140.6 SCFM.

3.8 SCFM x 37 = 140.6 SCFM

A Super Air Knife, operated at 80 PSIG with .002” stock shim installed will consume a total of 2.9 SCFM per inch of knife. An 18” SAK would then consume just 52.2 SCFM.

2.9 SCFM x 18 = 52.2 SCFM

140.6 SCFM – 52.2 SCFM = 88.4 SCFM saved 

Replacing an 18” drilled pipe with a Super Air Knife represents a total reduction in compressed air consumption of 63%! How much does this equate to in $$$? A reasonable average of cost to generate compressed air is about $0.25/ 1000 SCF. Let’s assume just a 40hr workweek:

88.4 SCFM x 60 mins x $0.25/1000 SCF = $1.33/hr

$1.33 x 40hr workweek = $53.20 USD

$53.20 x 52 weeks/year = $2,766.40 USD in yearly savings

The 2019 list price on a Model 110018 Super Air Knife is $397.00. By replacing the homemade solution with an 18” Super Air Knife, the return on investment is just over 38 working days of an 8-hr shift. If your plant runs multiple shifts, or works on weekends, it pays for itself even quicker.

 

exairsak_colormedia_600x

Once the knife has paid for itself, it doesn’t just simply stop saving you money. That savings continues to compound and add to your bottom line. Don’t waste unnecessary air (and money) by using solutions that aren’t engineered to do the job in a safe and efficient manner. Reach out to an Application Engineer and get yourself an Intelligent Compressed Air Product that’s Built to Last.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Light bulb photo courtesy of Pixabay.

You Don’t Need to Spend Thousands to Optimize Your Compressed Air System

There is no denying it, saving compressed air is a process.  This process often involves some type of energy audit or at the very least an evaluation of something going wrong with production and a way to improve it.  Many programs, consultants, and sales reps will devise a solution for the problem.

Often times the solution is to create a more efficient supply side of the compressed air system. The supply side is essentially everything within the compressor room or located in close proximity to the actual air compressor. While optimizing the supply side can amount to savings, many of these solutions and services can involve great expense, or capital expenditure processes.  These processes can often lead to delays and continued waste until the solution is in place.  What if there was a way to lower compressed air usage, save energy, solve some demand issues on the compressed air system and save some money while the capital expenditure process goes through for the larger scale project.

These solutions are a simple call, chat, email or even fax away. Our Application Engineers are fully equipped to help determine what points of your compressed air demand side can be optimized. The process generally starts with our Six Steps To Compressed Air Optimization.

6 Steps from Catalog

Once the points of use are evaluated the Application Engineer can give an engineered solution to provide some relief to the strain on your compressed air supply side.  For instance, an open copper pipe blow off that is commonly seen within production environments can easily be replaced with a Super Air Nozzle on the end of a Stay Set Hose that will still bend and hold position like the copper pipe does while also saving compressed air, reducing noise level, and putting some capacity back into the supply side of the compressed air system.

engineered nozzle blow offs
Engineered solutions (like EXAIR Intelligent Compressed Air Products) are the efficient, quiet, and safe choice.

One of the key parts to the solutions that we offer here at EXAIR is they all ship same day on orders received by 3 PM ET that are shipping within the USA. To top that off the cost is generally hundreds, rather than thousands (or tens of thousands) of dollars. Well under any level of a capital expenditure and can generally come in as a maintenance purchase or purchased quickly through the supply cribs.  Then, to take this one step further, when the EXAIR solution shows up within days and gets installed EXAIR offers for you to send in the blow off that was replaced and receive a free report on what level of compressed air savings and performance increases you will be seeing and provide a simple ROI for that blow off (though we would also encourage a comparison before a purchase just so you have additional peace of mind).

This amounts to saving compressed air and understanding how much air is being saved, adding capacity back into your supply side which will reduce strain on the air compressor, give the ability to increase production while the capital expenditure for the end solution of controls and higher efficiency on the supply side is approved to then save even more compressed air and energy.

The point is this, savings and efficiency doesn’t have to involve a capital expenditure, if that is the end game for your project that is great! Let EXAIR provide you a solution that you can have in house by the next business day to save money NOW and then put that savings towards another project. No matter the method, it all starts with a call, chat, email or fax.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF