Opportunities to Save On Compressed Air

Since air compressors use a lot of electricity to make compressed air, it is important to use the compressed air as efficiently as possible.  EXAIR has six simple steps to optimize your compressed air system.  (Click HERE to read).  Following these steps will help you to cut your overhead costs and improve your bottom line.  In this blog, I will cover a few tips that can really help you to save compressed air.

To start, what is an air compressor and why does it cost so much in electricity?  There are two types of air compressors, positive displacement and dynamic.  The core components for these air compressors is an electric motor that spins a shaft.  Like with many mechanical devices, there are different efficiencies.  Typically, an air compressor can put out anywhere from 3 SCFM per horsepower to 5 SCFM per horsepower.  (EXAIR settles on 4 SCFM/hp as an average for cost calculations.)  Equation 1 shows you how to calculate the cost to run your air compressor.

Equation 1:

Cost = hp * 0.746 * hours * rate / (motor efficiency)


Cost – US$

hp – horsepower of motor

0.746 – conversion KW/hp

hours – running time

rate – cost for electricity, US$/KWh

motor efficiency – average for an electric motor is 95%.

As an example, a manufacturing plant operates a 100 HP air compressor in their facility.  The cycle time for the air compressor is roughly 60%.  To calculate the hours of running time per year, I used 250 days/year at 16 hours/day.  So operating hours equal 250 * 16 * 0.60 = 2,400 hours per year.  The electrical rate for this facility is $0.08/KWh. With these factors, the annual cost to run the air compressor can be calculated by Equation 1:

Cost = 100hp * 0.746 KW/hp * 2,400hr * $0.08/KWh / 0.95 = $15,077 per year in just electrical costs.

There are two major things that will rob compressed air from your system and cost you much money.  The first is leaks in the distribution system, and the second is inefficient blow-off devices.   To address leaks, EXAIR offers an Ultrasonic Leak Detector.  The Ultrasonic Leak Detector can find hidden leaks to fix. That quiet little hissing sound from the pipe lines is costing your company.

A University did a study to find the percentage of air leaks in a typical manufacturing plant.  For a poorly maintained system, they found on average that 30% of the compressor capacity is lost through air leaks.  Majority of companies do not have a leak preventative program; so, majority of the companies fall under the “poorly maintained system”.  To put a dollar value on it, a leak that you cannot physically hear can cost you as much as $130/year.  That is just for one inaudible leak in hundreds of feet of compressed air lines.  Or if we take the University study, the manufacturing plant above is wasting $15,077 * 30% = $4,523 per year.

The other area to check is air consumption.  A simple place to check is your blow-off stations.  Here we can decide how wasteful they can be.  With values of 4 SCFM/hp and an electrical rate of $0.08/KWh (refence figures above), the cost to make compressed air is $0.25 per 1000 ft3 of air.

One of the worst culprits for inefficient air usage is open pipe blow-offs.  This would also include cheap air guns, drilled holes in pipes, and tubes.  These devices are very inefficient for compressed air usage and can cost you a lot of money.  As a comparison, a 1/8” NPT pipe versus an EXAIR Mini Super Air Nozzle.  (Reference below).  As you can see, by just adding the EXAIR nozzle to the end of one pipe, the company was able to save $1,872 per year.  That is some real savings.

 By following the Six Steps to optimize your compressed air system, you can cut your energy consumption, improve pneumatic efficiencies, and save yourself money.  With the added information above, you can focus on the big contributors of waste.  If you would like to find more opportunities to save compressed air, you can contact an Application Engineer at EXAIR.  We will be happy to help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Air Savings Calculator

I received an email from an engineer that was looking at our Super Air Nozzles.  They currently were using four blow-off lines that were made from 6mm ID copper tubes. The system was designed to blow out holes after machining.  The engineer was in charge of the task of optimizing 25 machining stations similar to this one.  He was familiar with EXAIR products from his previous employment, and he recognized the waste of compressed air by using open pipe.  He purchased four Nano Super Air Nozzle, model 1110SS, for a trial.  He was impressed with the performance, the low sound level, and the engineered design in safety.  But, for upper management in his company, he had to show a cost savings in order to change all the stations in the facility.  He asked me to help him in calculating the compressed air savings.

nano nozzle

He gave me some additional details about their application.  He was using the compressed air about 30% of the time throughout an 8 hour day at a pressure of 80 PISG.  He wanted to present the savings per day, week, and year as well as the payback period in his evaluation.  I have performed many of these calculations for other customers and was happy to help.  It is sometimes easier to speak in terms of savings, as everyone can relate to money, especially management.


Flow: 1110SS Nano Super Air Nozzle – 8.3 SCFM at 80 PSIG

Flow:  6mm ID copper tube – 42 SCFM at 80 PSIG

This is where the COST SAVINGS CALCULATOR on our website shines!

The Calculator tells us you will see a ROI (Return on investment) is less than 5 days! And will save you $3,033.00 over a full year on compressed air generation cost alone!

Don’t be fooled by the initial cost of a tube, pipe, drilled holes, or a substandard nozzle.  You can see by the facts above, if you use any additional compressed air in your blow-off application, it will cost you a lot of money in the long run.  If you need any help in calculating how much money EXAIR products can save you, you can use our Air Savings Calculator from our website, or you contact an Application Engineer at EXAIR.  We will be happy to help you.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Controlling Compressed Air can be Easy, and Save Thousands of Dollars

The history of automated controls can be traced back to inventors in ancient Greece & Egypt, who sought ways to keep more accurate track of time than afforded by sundials and hourglasses.  Their efforts, dating as far back as 300BC, produced devices actuated by water flow, which is actually quite reliable and repeatable: a set amount of water will flow via gravity through a fixed conduit in the exact same amount of time, every time.  These were in fairly common use until the invention of the mechanical clock in the 14th century.

The Industrial Revolution grew the need for automated processes exponentially…the need to control objects or tooling in motion, fluid flow, temperature, and pressure, just to name a few.  As time passed, the sky was literally the limit: modern aircraft & spacecraft rely on a staggering amount of automated processes from production to operation.

All throughout history, though, the benefits of automation remain the same: making processes more efficient.  That’s where the EXAIR EFC Electronic Flow Control comes in, for automating processes involving compressed air use, by turning air flow off when it’s not needed.  In fact, not only do they provide simple on/off control to blow only when a part is “seen” by the photoelectric sensor, there are eight distinct modes to incorporate delay on or off, flicker on or off, signal on/off delay, interval, or “One-Shot,” where the sensor detects the part, delays opening the valve per the timer setting, and blows for one second.

EFC Electronic Flow Control Systems are already assembled & wired for quick & easy installation.

The EXAIR EFC Electronic Flow Control is a true “plug and play” solution for automating a compressed air application.  Mount the sensor, plumb the valve, plug it in, and you’re ready to go.  There’s no complicated PLC wiring or programming, although the aforementioned mode selections do offer a great deal of flexibility other than “on when the sensor sees it; off when it doesn’t” operation, if desired.  Here are some prime examples of that flexibility, and the monetary benefits due to the compressed air consumption savings:

(Left) On/Off Delay setting used in tank refurbishment application to operate a “halo” of Super Air Knives for blow off as tanks exit oven where old paint is burnt off – $3,393 annual air savings. (Center) Interval setting actuates a Super Ion Air Knife for flat panel display dust blow off/static elimination – $2,045 annual air savings. (Right) Interval setting actuates a “halo” of Super Ion Air Knives to clean & remove static charge from plastic automotive bumper covers prior to painting – $5012 annual savings.

If you’d like to find out more about the EFC Electronic Flow Control can save you time, air, and money, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

How Lowering Sound Levels Produces ROI

Sound levels and ROI don’t immediately link together in a quick thought. Unless you are me and things seem to link up that don’t always go together, like peanut butter and a cheese burger. (Trust me, just try it, or if you are near West Lafayette, Indiana just go try the Purvis Burger across the street from Purdue University.) The truth behind tying sound levels being reduced and ROI together is actually pretty simple.

For this example, I am going to stay fairly high level as we could get into some pretty deep measurements of what exactly could be a cost savings.  If we reduce the sound level being generated by point of use compressed air products that is easiest to do by implementing engineered blow off products as well as reducing the operating pressure. Let’s use this example: A 1/4″ copper tube that is being used as a blow off will give off a noise level of over 100 dBA from 3′ away.  The table below shows that at an 80 psig inlet pressure the same tube will also consume 33 SCFM of compressed air.

By installing a model 1100 1/4″ FNPT Super Air Nozzle on the end of this copper tube, we  reduce the noise level generated by the blow off to 74 dBA. This measurement is at the same 80 psig inlet pressure and from 3′ away, which is well below the OSHA standard for allowable noise level exposure.  This also gives a broader more defined pattern to the air stream which may permit a reduction in compressed air pressure.

The other factor this changes is that the air consumption is reduced by 19 SCFM of compressed air which then results in energy savings.  This ultimately ends in a simple ROI equation where we are simply using the compressed air reduction as the only variable for the return.


By reducing the air consumption of a process that operates 24/7, 250 days a year that equates to  a savings of 6,840,000 SCFM per year and that equates to $1,710.00 USD. This does not account for any reduction in paying for hearing protection that may no longer be needed, or increase in production because the application functions better.

So you see, reducing noise levels in a facility can easily amount to a sizable cost savings in energy going towards compressed air consumption.  If you would like to walk through any potential applications, please contact us. 

Brian Farno
Application Engineer