Save Your Compressed Air Today with These Simple Methods

When discussing ROI, return on investment, for an industrial compressed air system it is necessary to  understand what it costs to produce compressed air.  Generally we calculate that it costs .25 cents to produce 1,000 SCF (Standard Cubic Feet) of compressed air here in the Midwest of the United States. For our example let’s consider a typical 250 HP industrial compressor running 24 hours per day/5 days per week for 52 weeks.  This compressor can generate 374,400,000 SCF per year, using the industry standard utility cost for the Midwest of .25 cents per 1,000 SCF it will cost $93,600 to produce that volume of compressed air.

To avoid wasting money on compressed air generation it is extremely important to eliminate unintended or wasteful compressed air use in your plant. The two main offenders are leaks and open tube blow-offs.  While soapy water is a good method for discovering leaks, EXAIR offers the Ultrasonic Leak Detector.  This handy device allows leaks to be detected at distances of up to 20′ away! Also consider how safe and convenient it is to find leaks in overhead pipes while standing on the ground instead of on a ladder. Using a tool like this to do an entire system leak audit can easily result in many small leaks being identified and when fixed result in a large savings.

open tubes
Thirteen Open Tube Blow-Offs

Now let’s look at what an open pipe or tube may consume. A single 1/4″ OD copper tube can use 33 SCFM @ 80 PSIG inlet pressure.  Using the manifold pictured above as our example with 13 open tubes, each tube can consume 33 SCFM @ 80 PSI inlet pressure. With 13 open tubes running 24 hours a day, 5 days a week, 52 weeks per year equates to a total consumption of  160,617,600 SCF annually.  If we installed the EXAIR model 1100 Super Air Nozzle  using a simple compression fitting we would reduce the air consumption dramatically.  The EXAIR 1100 Super Air Nozzle consumes 14 SCFM @ 80 PSIG inlet pressure, running 24 hours a day, 5 days a week, 52 weeks per year equates to a total consumption of 68,140,800 SCF annually.  That change will save you 92,476,800 SCF annually which is equal to $23,119.20 and 24.7% of air compressor capacity!  These calculations are all based on continuous running applications, if intermittent operation is possible consider the EXAIR Electronic Flow Control for even greater savings.  The EXAIR Electronic Flow Control combines a photoelectric sensor with timing control that limits compressed air use by turning it off when no part is present

Open pipe blow offs also violate OSHA standard 29 CFR 1910.242(b) requirement for using compressed air for cleaning when pressurized above 30 PSIG. Not to mention they generally are louder than 90 dBA, which is the maximum allowable noise exposure without hearing protection under OSHA standard 29 CFR – 1910.95 (a). The EXAIR engineered Super Air Nozzle is a great way to avoid a OSHA fine.

A great product that will help you keep your fingers on the pulse of compressed air consumption and demand is by incorporating the EXAIR Digital Flow Meter.  This handy item mounts directly to the pipe.  The digital display shows the amount of compressed air being used in any leg of your distribution system.  The Digital Flow Meter is offered in sizes for 1/2″ – 4″ Schedule 40 Iron Pipe and 3/4″ – 4″ Copper Pipe.  It also is available with the Summing Remote Display that is prewired with a 50′ cable, it is powered by the Digital Flow Meter and with a push of the button will display either the current compressed air consumption, consumption for the previous 24 hours or the total cumulative usage.

The Digital Flowmeters are also available with wireless capability using the ZigBee mesh network protocol, data can be passed from meter to meter to extend the distance over which the wireless system can operate.  Each meter has a range of up to 100′ (30 meters). Or you can opt for the USB Data Logger option.  The USB Data Logger can store approximately 9 hours of readings if set to sample once every second or up to 2 years if sampled every 12 hours.

If you would like to talk about any of the quiet EXAIR Intelligent Compressed Air® products or our line of Optimization Products, feel free to contact me or any EXAIR  Application Engineer.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Turn It Off: Saving Compressed Air The Easy Way

A major benefit to utilizing compressed air is the speed at which it can be shut off and re-energized for use – in fact, this can be done instantaneously. Shutting down the supply of compressed air to an application while it is not needed can drastically reduce the compressed air consumption of the process. This is an easy remedy that can produce significant savings.

Think about a place where you have a compressed air blow off with spaces between the parts or dwell times in conveyor travel. What about break times, do operators continue to keep the air on when they leave for a break or even worse, for the day?

Step number four in EXAIR’s Six Steps to Optimization is:

A simple manual ball valve and a responsible operator can provide savings at every opportunity to shut down the airflow. But an automated solution is a no-brainer and can provide significant savings.

Quarter Turn Ball Valves are low-maintenance and easy to install/use.

For a more automated approach, you can add a solenoid valve that would tie into your existing PLC or e-stop circuit, into your compressed air supply lines to aid in turning the compressed air on and off.

For an automated on/off solution can be found by using the EXAIR EFC (Electronic Flow Control). The EFC is made to accept 110V or 220V AC, and convert it to 24V DC to operate a sensor, timer, and solenoid valve. Its multiple operating modes allow you delay on, delay-off, and delay on/off among others. The operating mode can then be set to the specific time necessary for a successful application.

The spaces between parts can be turned into money saved. Every time you reach the end of a batch run, the EFC can turn the air off. You can also add solenoid valves and run them from your machine controls. If the machine is off, or the conveyor has stopped – close the solenoid valve and save the air. The modes are all defined in the video below.

So, take a look, or even better a listen, around the plant and see what you can find that could benefit from turning the air off; even if it is just for a moment it will help put money back into your bottom line.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

The Impressive ROI of an Engineered Air Nozzle

You may have asked…why should I switch over to an engineered air nozzle if my system already works? Or…How can air nozzles be much different?

Manufacturing has always been an advocate for cost savings, where they even have job positions solely focused on cost savings. Return on Investment (ROI) is a metric they look toward to help make good decisions for cost savings.  The term is used to determine the financial benefits associated with the use of more efficient products or processes compared to what you are currently using. This is like looking at your homes heating costs and then changing out to energy efficient windows and better insulation. The upfront cost might be high but the amount of money you will save over time is worth it.

Model 1100 Super Air Nozzles can save compressed air dollars and increase safety

But how is ROI calculated? It is very simple to calculate out your potential savings of using one of EXAIR’s Intelligent Engineered Compressed Air Products. If you would rather not do the calculations out yourself then we can do it for you by sending the item in question to our Efficiency Lab Testing. The Efficiency Lab Testing is a free service that we offer to show you the possible savings by switching to one of our products.

The following is a simple ROI  calculation for replacing open blowoffs with an EXAIR Super Air Nozzle:

  • ¼” Copper Pipe consumes 33 SCFM at 80 psig (denoted below as CP)
  • A Model 1100 ¼” Super Air Nozzle can be used to replace and only uses 14 SCFM at 80 psig (denoted below as EP)

Calculation:

(CP air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for Copper Pipe  

(33) * (60) * (8) * (5) * (52) = 4,118,400 SCF

(EP air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for EXAIR Product  

               (14) * (60) * (8) * (5) * (52) = 1,747,200 SCF

Air Savings:

SCF used per year for Copper Pipe – SCF used per year for EXAIR Product = SCF Savings

               4,118,400 SCF – 1,747,200 SCF = 2,371,200 SCF in savings

If you know the facilities cost to generate 1,000 SCF of compressed air you can calculate out how much this will cost you would save. If not, you can us $0.25 to generate 1,000 SCF which is the value used by the U.S. Department of Energy to estimate costs.

Yearly Savings:

                (SCF Saved) * (Cost / 1000 SCF) = Yearly Savings

                                (2,371,200 SCF) * ($0.25 / 1000 SCF) = $592.80 annual Savings

With the simple investment of $42 (as of date published) you can calculate out the time it will take to pay off the unit.

Time Until payoff:

                (Yearly Savings) / (5 days/week * 52 weeks/year) = Daily Savings

                                ($592.80/year) / (5 days/week * 52 weeks/year) = $2.28 per day

                (Cost of EXAIR Unit) / (Daily Savings) = Days until product has been paid off

                                ($42) / ($2.28/day) = 17.9 days  

As you can see it doesn’t have to take long for the nozzle to pay for itself, and then continue to contribute toward your bottom line. 

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

How Can You Benefit from EXAIR’s Efficiency Lab?

How many times have you purchased a new product and worried if it was the right choice? Well EXAIR can provide that confidence using our calibrated testing equipment to compare your current product to an EXAIR product, in our Efficiency Lab. Whenever I needed a new process or product I would spend countless hours researching how will this benefit me, my employer or my customer? Research is not only time consuming but also very costly.

EXAIR believes in their product so much that we offer an Efficiency Lab where we will test your production product and help show that our products will not only work for you, but also show that they can save money, as well as make your work environment a safer place.

EXAIR has provided performance values (force, noise, air consumption, ROI) for many of our products. We make purchasing from EXAIR fun because you know in advance that our products will meet or exceed your expectations. Further backing up our commitment with the Efficiency Lab we offer an 30 Day Unconditional Guarantee. EXAIR believes in our products and want to make your purchase a risk free process.

We can test the performance of your current product to EXAIRs Intelligent Compressed Air products for air consumption, force, noise levels… and provide a comprehensive report of our analysis, including simple ROI.  

What does our Efficiency Lab cost? EXAIR believes in our products so much, that this is a free service to our customers. Simply call and talk to one of our Application Engineers at 800.903.9247 or you can send an email to lab@exair.com or visit www.exair.com and talk on our live help. If you feel we can help with a comparison them simply send your product(s) freight prepaid to EXAIR Corporation attention to our Efficiency Lab. All trials will be on a confidential basis unless you provide permission to share.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK