Finding & Fixing Leaks: The Benefits of Creating a Leak Detection Program

Leaks in a compressed air system can be a substantial source of wasted energy. A facility that hasn’t maintained their compressed air system will likely have a leak rate around 20-30% of the total air production.  But with a leak detection plan you can reduce air leaks to less than 10% of the compressor output.

uhd

Along with the energy waste, leaks will contribute to higher operating cost.  Leaks cause a drop in system pressure, which can make air tools operate poorly, harming production cost and time. In addition, by forcing the equipment to cycle more often, leaks shorten the life of almost all system equipment, including the compressor. Increased running time can also lead to added maintenance and increased downtime. Finally, leaks can lead to adding unnecessary compressor volume.

Since air leaks are almost impossible to see, other methods must be used to locate them. The best way to detect leaks is to use an ultrasonic acoustic detector, Like EXAIR Ultrasonic Leak Detector (ULD). This unit can recognize the high frequency hissing sounds associated with air leaks. A person using the ULD only needs to point it in the direction of the suspected leak. When a leak is present, an audible tone can be heard with the use of the head phones, and the LED display will light.  Testing various unions, pipes, valves and fittings of a complete system can be done quickly and effectively at distances up to 20’ away!

uhd kk

uhd e

The advantages of ultrasonic leak detection include flexibility, speed, ease of use, the ability to test the system while machines are running, and the ability to find a wide variety of leaks. They involve very little training, operators often become competent after 10 minutes of training.

Due to the nature of ultrasound, it is directional in transmission. For this reason, the signal is loudest at its source. By scanning around a test area, it is possible to very quickly target in on a leak site and pin point its exact location. For this reason, ultrasonic leak detection is not only fast, it is also very accurate.

An active leak prevention program will embrace the following components: identification, tracking, repair, verification, and employee participation. All facilities with a compressed air system should establish an aggressive leak reduction program. A team involving managerial representatives from production should be formed to carry out this program.

A leak prevention program should be part of an overall program intended to improve the performance of compressed air systems. Once the leaks are found and repaired, the system should be started from the beginning until all leaks are addressed.

A good compressed air system leak repair program is very important in maintaining the efficiency, reliability, stability and cost effectiveness of any compressed air system.

kkkk

“First a Plant Engineer or Maintenance Supervisor must realize that leak repair is a journey, not a destination. An ongoing compressed air leak monitoring and repair program should be in place in any plant that has a compressed air system.” Explains Paul Shaw, a General Manager for Scales Industrial Technologies’ Air Compressor Division, and an Advanced CAC Instructor, “Leak identification and remediation with a high quality repair can lead to substantial energy savings that typically has a very rapid payback, usually a year or less. In the hundreds of leak audits and repairs that we have done we’ve found that the quality of the repair is critical to ensuring the customer receive the most value for his investment and that the leak remains repaired for as long as possible. From there, constantly monitoring for compressed air leaks and repairing them as they occur can help the plant continue to reap the energy benefits.”

Above is an excerpt from “Best Practices for Compressed Air Systems”, Appendix 4.E.1.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Intelligent Compressed Air: Membrane Dryers

A critical component on the supply side of your compressor system is the dryer. Atmospheric air contained within a compressed air system contains water vapor. The higher the temperature of the air, the more volume of moisture that air is capable of holding. As air is cooled, this water vapor can no longer be contained and this water falls out in the form of condensation. The temperature where this water will drop out is referred to as the dew point.

At a temperature of 75°F and 75% relative humidity, approximately 20 gallons of water will enter a 25HP compressor during a 24-hour period. As air is compressed, this water becomes concentrated. Since it’s heated during the compression process, this water stays in a vapor form. When this air cools further downstream, this vapor condenses into droplet form.

Moisture within the compressed air system can result in rust forming on the inside of the distribution piping, process failure due to clogged frozen lines in colder weather, false readings from instruments and controls, as well as issues with the point of use products installed within the system.

The solution to this problem is to install a dryer system. We’ve spent some time here on the EXAIR blog reviewing refrigerant dryers , desiccant dryers, deliquescent dryers, and heat of compression dryers. For the purposes of this blog, I’m going to focus on one of the newer styles on the market today: the membrane dryer.

Membrane Dryer

In a membrane dryer, compressed air is forced through a specially designed membrane that permits water vapor to pass through faster than the air. The water vapor is then purged along with a small amount of air while the rest of the compressed air passes through downstream. Generally, the dew point after the membrane dryer is reduced to about 40°F with even lower dew points also possible down to as low as -40°F!

With such low dew points possible, it makes a membrane dryer an optimal choice in outdoor applications that are susceptible to frost in colder climates. Membrane dryers also are able to be used in medical and dental applications where consistent reliability is critical.

A membrane dryer does not require a source of electricity in order to operate. The compact size makes it simple to install without requiring a lot of downtime and floor space. Since they have no moving parts, maintenance needed is minimal. Most often, this maintenance takes the form of checking/replacing filter elements just upstream of the membrane dryer. The membrane itself does need to be periodically replaced, an indicator on the membrane dryer will display when it needs to be changed. If particular instruments or processes in your facility are sensitive to moisture, a membrane dryer might be the best option.

However, there are some drawbacks to these types of dryers. They’re limited to low capacity installations, with models ranging from less than 1 SCFM up to 200 SCFM. This makes them more applicable for point-of-use installations than for an entire compressed air system. The nature in which the membrane dryer works necessitates some of the air to be purged out of the system along with the moisture. To achieve dew points as low as -40°F, this can equate to as much as 20% of the total airflow. When proper filtration isn’t installed upstream, oils and lubricants can ruin the dryer membrane and require premature replacement.

Make sure and ask plenty of questions of your compressor supplier during installation and maintenance of your system so you’re aware of the options out there. You’ll of course want to make sure that you’re using this air efficiently. For that, EXAIR’s wide range of engineered Intelligent Compressed Air Products fit the bill. With a variety of products available for same-day shipment from stock, we’ve got you covered.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

 

Membrane Dryer Schematic – From Compressed Air Challenge, Best Practices for Compressed Air Systems, Second Edition

 

Laminar vs. Turbulent Flow

Laminar flow is an fundamental component of compressed air efficiency. Believe it or not, laminar flow is controlled exclusively by the airline used in a compressed air system. To fully understand the effects of laminar flow in a compressed air system, we need to explain exactly what it is.

Fluids & gases are unique in their ability to travel. Unlike solid molecules that remain stationary whose molecules tend to join others of the same kind; fluid molecules aren’t so picky. Fluid molecules, such as gases and liquids, partner with different molecules and are difficult to stop.

Laminar flow describes the ease with which these fluids travel; good laminar flow describes fluid travelling as straight as possible. On the contrary, when fluid is not travelling straight, the result is turbulent flow.

PVDF Super Air Knife
Laminar Flow

Turbulent air flow results in an inefficient compressed air system. This may not seem like a major concern; yet, it has huge impacts on compressor efficiency. Fluid molecules bounce and circle within their path, causing huge energy wastage. In compressed air systems, this turbulent airflow results in a pressure drop. How do you avoid this from happening? It all comes down to compressed air system design.

Flow type
Laminar vs. Turbulent Flow

The design and material of the air pipe, as well as the positioning of elbows and joints, has a direct connection to laminar flow and pressure drop. To avoid high energy consumption of your compressed air system, reducing pressure drop is key.

If your system is experiencing high pressure drop, your compressor has to work overtime to provide the needed air pressure. When your compressor works overtime, it not only increases your maintenance costs, but also your energy bills.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

About Air Compressors: Air Intake Best Practices

Take a second and think about where the air compressor is located within your facility.  It is more than likely not a major focal point displayed prominently in the floor layout. There is a better chance it is tucked away in a corner of the facility where operators seldom travel.  No matter the type of air compressor, it still has an intake where it pulls in the ambient air from around the compressor then sends it through some process and on the demand side of your compressed air system.  These intakes can easily be placed out of sight and out of mind especially in older facilities that were designed when compressors were loud and the piping layout kept them away from operators due to sound level restrictions.

Air Compressor
Antique Air Compressor (Not safe for use!)

That’s why your compressor manufacturer supplies a specific grade of air inlet/intake filter, and this is your first line of defense. If it’s dirty, your compressor is running harder, and costs you more to operate it.  If it’s damaged, you’re not only letting dirt into your system; you’re letting it foul & damage your compressor. It’s just like changing the air filter on your car, your car needs clean air to run correctly, so does your compressor and the entire demand side of your compressed air system.

According to the Compressed Air Challenge, as a compressor inlet filter becomes dirty, the pressure drop across the inlet increases, this is very similar to the point of use compressed air filters.  The inlet filter on the compressor is the only path the compressor has to pull in the air, when restricted the compressor can begin to starve for air very similar to if you only had a small straw to breath through and told to run a marathon.  A clogged inlet filter can give false symptoms to compressor technicians as well.

The effects can mimic inlet valve modulation which result in increased compression ratios. If we were to form an example based on a compressor with a positive displacement, if the filter pressure drop increases by 20″ H2O, a 5% reduction of the mass flow of air will be present without a reduction in the power being drawn by the compressor. This all leads to inefficiency which easily amounts to more than the cost to replace the depleted inlet air filter.

compressor
Compressed Air System

Where you place the filter is just as important as how often you replace it.  There are some tips to be used when mounting the inlet filter.

  1. The filter can be placed on the compressor, but the inlet pipe should be coming from an external area to the compressor room or even the building if possible. The inlet should be free from any contaminants as well.  Some examples that are easy to overlook are nearby condensate discharges, other system exhausts and precipitation.
  2. Depending on the type of compressor being used, a lower intake air temperature can increase the mass flow of air due to the air density.  A compressor that is lubricant injected is not susceptible to this due to the air mixing with the warmer lubricant before being compressed.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Images Courtesy of  the Compressed Air Challenge and thomasjackson1345 Creative Commons.

Compressor Controls – Maximize Supply Side Efficiency

Air Compressor
Air Compressor and Storage Tanks

One of the most important aspect of an efficient compressed air delivery system is effective utilization of compressor controls. The proper use of compressor controls is critical to any efficient compressor system operation. In order to reduce operating costs, compressor controls strategies need to be developed starting with minimizing the discharge pressure. This should be set as low as possible to keep energy costs to a minimum.

The compressor system is designed with maximum air demand in mind. During periods of lower demand compressor controls are used to coordinate a reduction in output that matches the demand. There are six primary types of individual compressor controls:

  1. Start/Stop – This is the most basic control. The start/stop function will turn off the motor in response to a pressure signal.
  2. Load/Unload – The motor will run continuously, but the compressor unloads when a set pressure is reached. The compressor will then reload at a specified minimum pressure setting.
  3. Modulating – Restricts the air coming into the compressor to reduce compressor output to a specified minimum. This is also known as throttling or capacity control.
  4. Dual/Auto Dual – On small reciprocating compressors, this control allows the selection of either Start/Stop or Load/Unload.
  5. Variable Displacement – Gradually reduces the compressor displacement without reducing inlet pressure.
  6. Variable Speed – Controls the compressor capacity by adjusting the speed of the electric motor.

Most compressor systems are comprised of multiple compressors delivering air to a common header. In these types of installations, more sophisticated controls are required to orchestrate the compressor operation. Network controls link together each compressor in the system to form a chain. Usually, one compressor will assume the lead role with the others taking commands from the primary compressor. Some disadvantages of network controls include: only having the ability to control the compressors, cannot be networked with remote compressor rooms without a master control, and they generally only work well with compressors of the same brand due to microprocessor compatibility issues.

In more complicated systems, master controls can be used to coordinate all of the necessary functions to optimize the compressor system. Master controls have the ability to monitor and control all of the components within the system. The high-end master control systems utilize single point control logic with rate of change dynamic analysis in order to determine how the system will respond to changes. Changes on the demand side, supply side, or the ambient environment will all impact a compressor’s performance. An effective master control will be able to identify these changes and provide the most energy efficient response.

At the point of use, it’s always important to ensure you’re using a product that was engineered to reduce compressed air consumption. EXAIR’s line of Intelligent Compressed Air Products are available from stock to help you manage your overall operating costs.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Images courtesy of thomasjackson1345 via Creative Commons License.

Understanding Compressed Air Supply Piping

An important component of your compressed air system is the supply piping. The piping will be the middle man that connects your entire facility to the compressor. Before installing pipe, it is important to consider how the compressed air will be consumed at the point of use.  You’ll also need to consider the types of fittings you’ll use, the size of the distribution piping, and whether you plan to add additional equipment in the next few years. If so, it is important that the system is designed to accommodate any potential expansion. This also helps to compensate for potential scale build-up (depending on the material of construction) that will restrict airflow through the pipe.

Air Compressor
Air Compressor and Storage Tanks

The first thing you’ll need to do is determine your air compressor’s maximum CFM and the necessary operating pressure for your point of use products. Keep in mind, operating at a lower pressure can dramatically reduce overall operating costs. Depending on a variety of factors (elevation, temperature, relative humidity) this can be different than what is listed on directly on the compressor. (For a discussion of how this impacts the capacity of your compressor, check out one of our previous blogs – Intelligent Compressed Air: SCFM, ACFM, ICFM, CFM – What do these terms mean?)

Once you’ve determined your compressor’s maximum CFM, draw a schematic of the necessary piping and list out the length of each straight pipe run. Determine the total length of pipe needed for the system. Using a graph or chart, such as this one from Engineering Toolbox. Locate your compressor’s capacity on the y-axis and the required operating pressure along the x-axis. The point at which these values meet will be the recommended MINIMUM pipe size. If you plan on future expansion, now is a good time to move up to the next pipe size to avoid any potential headache.

After determining the appropriate pipe size, you’ll need to consider how everything will begin to fit together. According to the Best Practices for Compressed Air Systems from the Compressed Air Challenge, the air should enter the compressed air header at a 45° angle, in the direction of flow and always through wide-radius elbows. A sharp angle anywhere in the piping system will result in an unnecessary pressure drop. When the air must make a sharp turn, it is forced to slow down. This causes turbulence within the pipe as the air slams into the insides of the pipe and wastes energy. A 90° bend can cause as much as 3-5 psi of pressure loss. Replacing 90° bends with 45° bends instead eliminates unnecessary pressure loss across the system.

Pressure drop through the pipe is caused by the friction of the air mass making contact with the inside walls of the pipe. This is a function of the volume of flow through the pipe. Larger diameter pipes will result in a lower pressure drop, and vice versa for smaller diameter pipes. The chart below from the Compressed Air and Gas Institute Handbook provides the pressure drop that can be expected at varying CFM for 2”, 3”, and 4” ID pipe.

ccfdfcfdddfcvgdsdfzxcv.png
Air Pressure Drop

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Images Courtesy of  the Compressed Air Challenge and thomasjackson1345 Creative Commons.

Intelligent Compressed Air: Avoid Pressure Drop

A critical component to optimal performance of any compressed air operated product is ensuring sufficient compressed air flow. Simply put, inadequate air flow won’t allow you to get the job done.

As compressed air moves through the distribution system, it encounters friction inside of the walls of the pipe, tube, hose, etc. The diameter of the pipe, length, number of direction changes, and finish surface of the inner wall all play a part in this. A drop in air pressure will occur as a result of this friction. In addition to pressure drops experienced due to the distribution system, they can also occur at the point of use.

4597315810_fb8e3e4d26_o
Common analog pressure gauge

When designing and maintaining your compressed air system, pressure measurements should be taken across varying points to identify (and fix) any issues before they create a greater problem down the road. According to the Compressed Air Challenge, these are the places you should take regular pressure measurements to determine your system operating pressure:

  • Inlet to compressor (to monitor inlet air filter) vs. atmospheric pressure
  • Differential across air/lubricant separator
  • Interstage on multistage compressors
  • Aftercooler
  • At treatment equipment (dryers, filters, etc.)
  • Various points across the distribution system
  • Check pressure differentials against manufacturers’ specifications, if high pressure drops are noticed this indicates a need for service

*More recent compressors will measure pressure at the package discharge, which would include the separator and aftercooler.

Once you’ve taken these measurements, simply add the pressure drops measured and subtract that value from the operating range of your compressor. That figure is your true operating pressure at the point of use.

If your distribution system is properly sized and the pressure drops measured across your various equipment are within specifications, any pressure drop noticed at the point of use is indicative of an inadequate volume of air. This could be due to restrictive fittings, undersized air lines, hose, or tube, or an undersized air compressor. Check that the point of use product is properly plumbed to compressed air per the manufacturer’s specifications.

EXAIR Products are designed to minimize this pressure drop by restricting the flow of compressed air at the point of use. The more energy (pressure) that we’re able to bring to the point of use, the more efficient and effective that energy will be. The photo below shows two common examples of inefficient compressed air usage. With an open-ended blow off, a pressure drop occurs upstream inside of the supply line. If you were to measure the pressure directly at the point of use, while in operation, you’d find that the pressure is significantly lower than it is at the compressor or further up the line. In the other photo with modular style hose, some pressure is able to be built up but if it gets too high the hose will blow apart. These types of modular style hose are not designed to be used with compressed gases.

open end blow offs
They may be inefficient, but they sure are loud…

EXAIR’s Super Air Nozzles, on the other hand, keep the compressed air pressure right up to the point of discharge and minimize the pressure drop. This, in addition to the air entrained, allows for a high force while maximizing efficiency. If you’d like to talk about how an EXAIR Intelligent Compressed Air Product could help to minimize pressure drop in your processes give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

 

Pressure gauge photo courtesy of Cliff Johnson via Flickr Creative Commons License