Hot Off The Press (Release): EXAIR Catalog #35

If you’re a registered user on our website, you likely got word of this already through our August 15, 2023 Press Release. If not – or even if you did and want some more details – read on, and I’ll tell you all about it.

Like all of our previous catalogs, Catalog #35 provides specification, dimensional, and performance data on all of our stock products. Many of them include detailed descriptions of “textbook” applications for those products. You’ll also find:

  • Efficiency Lab (page 6): If you want a full performance report on a compressed air device you’re using right now, this is a free service we offer. Contact an Application Engineer and arrange to have it sent in. We’ll test it for compressed air consumption, force applied, and sound level, and send you a report on it. It’ll include, of course, the EXAIR engineered product(s) that we’ll recommend, along with performance data on them, as a comparison.
  • Our Six Steps (page 7): The first page of our Optimization section details the Six Steps To Optimizing Your Compressed Air System. It’s not necessary to follow them in order, and not all of them are applicable to every single compressed air system. But if you’re serious about reducing your compressed air costs, this is a comprehensive plan on how to do it for sure.
  • OSHA Maximum Allowable Noise Exposure table & typical Air Consumption values of common “homemade” blow offs (page 53): We put this here so you can turn the next few pages and see what a difference engineered products like EXAIR Super Air Nozzles can make.
  • Droplet Size data (page 98): Use this to determine the suitability of our Atomizing Spray Nozzles for liquid spraying applications.
  • Vortex Tube Specification and Performance tables (pages 201-202): If you know how much cold air flow you need, and at what temperature you need it, you can use these tables to determine which EXAIR Vortex Tube (or other Spot Cooling Product) to use.
  • Cabinet Cooler System Sizing Guide (page 220): Just fill in the blanks & send this in, and we’ll quickly & accurately calculate the heat load of your electrical/electronic enclosure, and specify the right Cabinet Cooler System for you.

Now, if you’ve ever had any of our previous catalogs, you might have noticed that those were already in there, and that’s all pretty great. What’s REALLY great about Catalog #35, though, is some of the new features:

  • Line Vac Conveyance Data (pages 176-177): While there’s WAY too many variables in bulk conveyance applications to accurately calculate conveyance rates. We’ve done some controlled, in-house testing with several different materials, several different Line Vacs, at several different lengths & heights, though, and we’re proud to publish that in the new catalog. This shouldn’t be considered a guarantee of performance, but if you’re wondering how much of a particular bulk material you can convey, this table will certainly get you in the right ballpark.
  • Best Practice for Using EXAIR Intelligent Compressed Air Products (pages 239-240): This information has always been in the Air Data files on our website, along with an ABUNDANCE of data that’ll help you get the most out of your compressed air system. Now, it’s at your fingers.

Of course, I’d be remiss if I wrote a whole blog on the new catalog without mentioning the new products:

  • Model 9207 Ultrasonic Leak Detector (pages 18-19): This serves the same function as the now-obsolete Model 9061, but with some handy upgrades like a LED display, a sleek new body, and high quality ear buds.
Use the Model 9207 Ultrasonic Leak Detector’s parabola to find the vicinity of the leak, and the tubular extension to identify its exact location.
  • 1/2 NPT HollowStream Cone Atomizing Nozzles (page 105): With five new distinct models at the high-flow end of our already comprehensive line of Liquid Atomizing Spray Nozzles, these provide up to 53 gallons per minute of liquid flow, and are capable of passing particulate up to 0.344″ in diameter.
The Hollow Cone spray pattern is ideal for cooling, cleaning, foam breaking, rinsing, and dust suppression. It also uses considerably less liquid than the FullStream models, when higher flow rate isn’t necessary.
EXAIR’s ATEX Cabinet Cooler Systems provide heat protection for electrical enclosures in potentially explosive atmospheres, like those found on offshore drilling platforms, petrochemical plants, mines, flour mills, etc.

Like our previous catalogs, Catalog 35 is now available for download (in product line sections due to file size) from the PDF Library at EXAIR.com. You can also request a copy to be mailed to you, or you can contact an Application Engineer to have individual product line sections (again, because of file size) email to you right away.

As always, if you’d like to talk about how to get the most out of your compressed air system, our team of Application Engineers are here Monday to Friday, 7am to 4pm Eastern, to help with that. Give me a call.

Russ Bowman, CCASS

Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR Solenoid Valves and Ball Valves

EXAIR has been a pioneer in compressed air products for efficiency, safety, and quality.  We have designed our products using some interesting inventors from the past; like Henri Coanda and Giovanni Venturi.  These fluid dynamic engineers found a way to entrain ambient air.  We use these phenomena to increase the efficiency of our products by adding free ambient air to the airstream.  This will create a hard-hitting force without using a lot of compressed air.  Since compressed air is very expensive to produce, it will save you much money when using our blow-off devices.  To save even more money, EXAIR does offer valves to turn off the compressed air supply when not in use.  In this blog, I will go over the types of valves that we have.

The Manual Valves allow operators to turn on and off their system by hand. The full-flow ball valves range from ¼” NPT to 1 1/4” NPT in size and will not restrict flows.  EXAIR also offers a manual foot pedal valve for hands-free operations.  This ¼” NPT foot valve has a 3-way operation and works great if the operator has to use both hands in their process.

EXAIR also offers Solenoid Valves to turn on and off the supply of compressed air electrically for automated systems. We offer Solenoid Valves in three different voltages; 110Vac, 240Vac, and 24Vdc.  They have a large range of flows with ports ranging from ¼” NPT to 1” NPT.  All models are UL listed and are CE and RoHS compliant.

In more elaborate situations, EXAIR has attached these solenoid valves to a miniature PLC-like controller.  It is called the Electronic Flow Control, or EFC.  It uses a photoelectric eye to detect the part and trigger a timing sequence.  We have eight different timing operations to best combine the trigger mechanism with the blow-off device.  This is the next step in optimization, which will keep the compressed air usage to a minimum. 

EXAIR created a chart that shows “Six Steps to Optimizing Your Compressed Air System.”  Even though EXAIR has the most efficient products on the market for pneumatic systems, we still want to help our customers save even more money.  When not in use, the compressed air should be turned off, according to the fourth step.  In this blog, I discussed some products that can assist you with this.  If you wish to discuss further how to optimize your compressed air system, an Application Engineer at EXAIR will be happy to assist you. 

John Ball
Application Engineer


Email: johnball@exair.com
Twitter: @EXAIR_jb

6 STEPS To Optimizing Compressed Air: Step 5 – Install Secondary Receiver Tanks

Since air compressors require electricity to make compressed air, it is important to optimize your compressed air system. EXAIR has six simple steps, and following these steps will help you cut electrical costs, reduce overhead, and improve your bottom line.  In this blog, I will cover the fifth step –intermediate storage of compressed air near the point-of-use. 

I had a customer that was looking at a model 1122108, 108” (2,743mm) Super Ion Air Knife Kit.  The application was removing static and debris from insulated panels which they used for large refrigerated trailers.  They were worried about how much compressed air that it would use; and they were considering a blower-type system.  I went through the negative aspects like noise, cost, maintenance, and ineffectiveness with turbulent air flows.  But, when you are limited in the amount of compressed air, I had to look at another way.  Since the process was intermittent, I used the fifth step to optimize their system to use a much better solution for their application.  The cycle rate was 2 minutes on and 10 minutes off.  I was able to calculate the size of a secondary tank to help their compressed air system.   

Model 9500-60

I would like to expand a bit more about secondary receiver tanks.  They can be strategically placed throughout the plant to improve the “ebbs and flows” of pneumatic demands.  The primary receiver tanks help to protect the supply side when demands are high, and the secondary receiver tanks help pneumatic systems on the demand side.  They give additional capacity at the end of distribution lines.  Essentially, it is easier and more efficient for compressed air to travel out from a nearby source and into an application rather than traveling through long lengths of pipes from the distribution system.

For calculating the volume size for your secondary receiver tank, we can use Equation 1 below.  It is the same for sizing a primary receiver tank, but the scalars are slightly different.  The supply line for air drops will typically come from a header pipe and are generally smaller in diameter.  So, we have to look at the air restriction that can feed into the tank.  For example, a 1” NPT Schedule 40 Pipe at 100 PSIG can supply a maximum of 150 SCFM of air flow.  This value is used for Cap below in Equation 1.  C is the largest air demand for the machine or targeted area that will be using the tank.  If the C value is less than the Cap value, then a secondary tank is not needed.  If the Cap is below the C value, then we can calculate the tank volume that would be needed.  The other value in the equation is the minimum tank pressure.  In most cases, a regulator is used to set the air pressure for the machine or area.  If the specification is 80 PSIG, then you would use this value as P2P1 is the header pressure that will be coming into the secondary tank.  With this collection of information, you can use Equation 1 to calculate the minimum tank volume. 

Equation 1:

V = T * (C – Cap) * (Pa) / (P1-P2)

Where:

V – Volume of receiver tank (cubic meter)

T – Time interval (minutes)

C – Air demand for system (cubic meter per minute)

Cap – Supply value of inlet pipe (cubic meter per minute)

Pa – Absolute atmospheric pressure (Bar)

P1 – Header Pressure (Bar)

P2 – Regulated Pressure (Bar)

For this customer above, I am still working on this purchase.  But we went from a “we don’t have enough compressed air” to a “we can possibly use the better solution with the Super Ion Air Knife”.  If you find that you might be having issues with your equipment running optimally, you may be able to install a secondary receiver to your system.  EXAIR offers 60 Gallon tanks, model 9500-60, to add to those specific areas.  If you have any questions about using a receiver tank in your application, primary or secondary, you can contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Saving Compressed Air – The Fourth Utility

We all know the value of electric, water and gas but what about compressed air? Your compressed air system has an annual cost and deserves to be treated as a cost center. In my previous career, I was guilty of not having a budget for compressed air in my business plan and wish I knew then what I needed for a more efficient compressed air system. Compressed air carries a significant value and deserves to be a cost center with aggressive annual efficiency planning.

Unfortunately, several misconceptions about how to reduce energy costs through increased compressed air efficiencies have prevented many industrial operations from taking control of their compressed air energy costs. There are 2 main focuses about compressed air systems that can begin to reduce expenditures, improve the reliability of your systems and generate savings for future equipment improvements. First, you can look at energy savings in the compressor motors but this is a more complicated and more expensive endeavor that can be a next step when tackling compressed air savings head on. Second, the demand side of the compressed air system is where many efficiencies can be gained. A focus on leaks, storage, pressure and inefficient use are generally simple and inexpensive to address.

Increasing the pressure isn’t always the answer. In fact, frequently it is not. An efficient compressed air system is characterized by stable pressure levels. Steady pressure levels are achieved by addressing two things: air demand patterns and the minimum acceptable pressure level required for reliable production. Unfortunately, many operators who fail to properly diagnose the causes of system problems simply increase pressure to improve performance. Arbitrary increases to the pressure without understanding the root causes of performance issues can lead to increased energy costs. An audit completed by your compressed air specialist will reveal which aspects of your compressed system can be fine-tuned in order to reduce energy costs and increase reliability. Use of the “Six Steps to Optimizing Your Compressed Air System” will help achieve your goals for cost savings and efficiencies.

Begin with establishing a baseline for your system and learn what your typical air use looks like. This can be done with a flow meter installed at the compressor outlet. A flow meter is also useful at each machine or process demanding compressed air because they can (1) indicate if a machine or process is operating atypically and consuming more air than usual and (2) identify where high demand machines or processes are located in your facility.

It is estimated that up to 20% of compressed air produced by industrial air compressors is wasted due to leaks in typical facilities.¹ Approximately 20% of the air produced for industrial applications ends up being lost through leaks. The use of EXAIRs’ model 9061 Ultrasonic Leak Detector will enhance your efforts in finding leaks.

Choose engineered products to apply compressed air, these product have a focus on efficiency and outperform commercial products which do not concern themselves with air reduction.

When moving around your facility, look for applications of compressed air which can be turned off when personnel are on break or can be turned off in between parts. This step is very simple and can reap big savings.

Be sure to store compressed air close to high demand applications, this will prevent peaks and valleys in your compressed air demand which contributes toward less maintenance for your compressor.

Also lower your pressure at compressed air points of use. Keeping the pressure at the minimum pressure required for a successful application can also help keep system wide pressure to a minimum, which will increase lifetime of your compressor.

The good news is that, in most cases, lower energy costs are completely attainable for industrial operations that have not optimized their compressed air systems. To begin saving please contact EXAIR about compressed air products that can lower your compressed air costs today.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@EXAIR.com
Twitter: @EXAIR_EK

  1. Best Practices for Compressed Air Systems, second edition. From The Compressed Air Challenge.