Compressed air Storage: Do you need a Receiver Tank?

Maintaining a “supply and demand” balance in the design & operation of compressed air systems often includes receiver tanks.

Just like in economics, we have to consider both sides – supply AND demand – to best maintain this balance.  Also like in economics, there are numerous factors…on both sides…but the two most critical factors are:

  • Compressor capacity control (supply side)
  • System storage (demand side)

I wrote a blog on “Air Compressor Motors and Controls, Working Together”, outlining the ‘supply side’ variables, today lets look at the system storage. Distribution piping makes up a certain amount of this, and another great blog from my colleague, Tyler Daniel – “Intelligent Compressed Air: Distribution Piping and Pressure Drop” – gets me off the hook for THAT part of the discussion today.

We can consider the air capacity of system piping to be fixed for the purposes of this discussion, so our “variable” will be the capacity of storage tanks. Let’s start with the reasons for the need for system storage: Strategically placed point-of-use air receivers provide stored energy for intermittent demands.  This enables the compressed air system to handle fluctuating loads, efficiently & reliably.  It also minimizes impact (e.g., sudden and often detrimental drops) on the system pressure.

Next, we’ll look at location. There are a couple of common options to consider:

  • The intermittent demand. Installing a receiver here will provide enough air for short duration, high consumption events, protecting the rest of the system from pressure excursions. Dedicating the receiver to this application will mean isolating it from the rest of the system with a check valve (so it only supplies the load in question) and a needle valve (so recharging the receiver itself, between the intermittent uses, doesn’t adversely affect total system pressure).
  • The critical load(s). Instead of using stored air for the intermittent load, you can also use it for the important loads you’re trying to protect. All sorts of machinery with pneumatic components can “crash” if a nearby intermittent demand starts up & “steals” their air. You’ll use a check valve (same as above), but using a needle valve to throttle the air flow that recharges the receiver risks “starving” the critical load. Don’t do that unless there’s a really good (and likely really specific) reason for it.

Finally, we’re going to do some math, so we know how big this receiver has to be. Here’s the equation we use to do that:

Let’s calculate the receiver size needed to supply an intermittent load of 400 SCFM (C) @80psig (P2), that’ll run for one minute (T). You can use data specific to your system to come up with a value for (Cap) but here I’m going to assume we want the receiver to be able to handle the whole thing, so Cap = 0. I’m also going to assume we’re at sea level, so Pa = 14.7psia and that our compressor’s discharge pressure (the pressure at which the receiver can be charged to) is 120psig (P1):

That’s an awfully big tank. Now, let’s calculate the receiver size needed to protect a critical load that uses 55 SCFM @60psig, and that due to the system design, we can count on 25 SCFM @120psig from the compressor:

This is a much more manageable size, in fact, our 60 Gallon Receiver Tank (Model 9500-60) would be ideal. It’s 20″ in diameter and just over 50″ tall, so it doesn’t take up a lot of floor space. It comes with a drain valve and connections for compressed air flow in & out, pressure gauge, relief valve, etc.

Step Five of our Six Steps To Optimizing Your Compressed Air System: Use intermediate storage near the point of use.

Now, the above example is a completely hypothetical situation, and I purposely chose exaggerated values to show that there can indeed be a clear “winner” in the choice between the two installation points. If you have a situation like this, and would like help in finding the solution that makes the most sense, give us a call.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Compressed Air System Equipment – What You Need To Know

The use of compressed air in industry is so widespread that it’s long been called “the fourth utility” (along with electricity, water, and natural gas). As a function of energy consumption (running an air compressor) to energy generated (operation of pneumatic equipment), only 10-15% of the energy consumed is converted to usable energy stored as compressed air. Its “bang for the buck”, however, comes when you consider the total cost of ownership – yes, it costs a lot to generate, but:

  • It’s relatively safe, when compared to the risks of electrocution, combustion, and explosion associated with electricity & natural gas.
  • Air operated tools, equipment, and products are generally much cheaper than their electric, gas, or hydraulic powered counterparts.
  • Air operated products, like anything, require periodic maintenance, but oftentimes, that maintenance simply comes down to keeping the air supply clean and moisture free, unlike the extensive (and expensive) maintenance requirements of other industrial machinery.

Even with these advantages, though, it’s still critical to get all you can out of that 10-15% of the energy you’re consuming to make that compressed air, and that starts with having the right stuff in the right place. Now, all of the following “stuff” might not apply to every compressed air system. I once worked in a repair shop, for example, with a small compressor that was used for a couple of blow off guns, impact drivers, and a sidearm grinder. I’ve also done field service in facilities with hundreds of pneumatic cylinders & air motors that operated their machinery. Those places had even more “stuff” than I’m devoting space to in this blog, but here’s a list of the “usual suspects” that you’ll encounter in a properly designed compressed air system:

  • Air compressor. I mean, of course you need a compressor, but the size and type will be determined by how you’re going to use your air. The small repair shop I worked in had a 5HP reciprocating positive displacement compressor with a 50 gallon tank, and that was fine. The larger facilities I visited often had several 100 + HP dynamic centrifugal or axial compressors, which get more efficient with size.
  • Air preparation. This includes a number of components that can be used to cool, clean, and dry the air your compressor is generating:
    • Pressurizing a gas raises its temperature as well. Hot compressed air could cause unsafe surface temperatures and can damage gaskets, seals, and other components in the system. Smaller compressors might not have this problem, as the heat of compression is often dissipated through the wall of the receiver tank and the piping at a rate sufficient to keep the relatively low (and often intermittent) flow at a reasonable temperature. Larger compressors usually come with an aftercooler.
    • The air you compress likely has a certain amount of moisture in it…after nitrogen and oxygen, water vapor usually makes up more of the content of atmospheric air than all other trace gases combined. There are a number of air dryer types; selection will be dictated by the specifics of your facility.
    • Your air is going to have other contaminants in it too. We did welding & grinding in the repair shop where our compressor sat in the corner. We kept a few spare intake filters handy, and replaced them regularly. In conjunction with the aftercooler & dryer, larger industrial compressors will also have particulate filters for these solids. For extra protection, coalescing filters for oil vapor, and adsorption filters for other gases & liquid vapors, are specified.
  • Distribution. In the repair shop, we had a 3/4″ black iron pipe that ran across the ceiling, with a few tees & piping that brought the air down to the individual stations where we used it. The larger facilities I visited had larger variations of this “trunk and branch” type network, and some were even big enough to make use of a loop layout…these were especially popular when multiple air compressors were located throughout the facility. In addition to black iron, copper & aluminum pipe (but NEVER PVC) are commonly used too.
  • Condensate removal. The small repair shop compressor had a valve on the bottom of the tank with a small hose that we’d blow down into a plastic jug periodically. Larger systems will have more complex, and oftentimes automated condensate management systems.

So, that’s the system-wide “stuff” you’ll usually encounter in a properly designed compressed air system. After that, we’ll find a number of point-of-use components:

  • Air preparation, part 2. The compressor intake & discharge filtration mentioned above make sure that you’re putting clean air in the distribution piping. That’s fine if your distribution piping is corrosion resistant, like aluminum or copper, but black iron WILL corrode, and that’s why you need point-of-use filters. EXAIR Automatic Drain Filter Separators have 5 micron particulate elements, and centrifugal elements that ‘spin’ any moisture out. If oil is an issue, our Oil Removal Filters have coalescing elements for oil/oil vapor removal, and they provide additional particulate protection to 0.03 microns.
  • Pressure control. Your compressor’s discharge pressure needs to be high enough to operate your pneumatic device(s) with the highest pressure demand. Odds are, though, that not everything in your plant needs to be operated at that pressure. EXAIR Pressure Regulators are a quick & easy way to ‘dial in’ the precise supply pressure needed for specific products so they can get the job done, without wasting compressed air.
  • Storage. This could also be considered system “stuff”, but I’m including it under point-of-use because that’s oftentimes the reason for intermediate storage. Having a ready supply of compressed air near an intermittent and/or large consumption device can ensure proper operation of that device, as well as others in the system that might be “robbed” when that device is actuated. They’re good for the system, too, as they can eliminate the need for higher header pressures, which cause higher operating costs, and increased potential for leaks. EXAIR Model 9500-60 60 Gallon Receiver Tanks are an ideal solution for these situations.

For more information on proper installation and use of compressed air system “stuff” like this, the Compressed Air & Gas Institute’s Compressed Air and Gas Handbook has a good deal of detailed information. The Air Data section of EXAIR’s own Knowledge Base is a great resource as well.

Of course, all the attention you can pay to efficiency on the supply side doesn’t matter near as much if you’re not paying attention to HOW you’re using your compressed air. EXAIR Intelligent Compressed Air Products are designed with efficiency, safety, and noise reduction in mind. Among the other ways my fellow Application Engineers and I can help you get the most out of your compressed air system, we’re also here to make sure you get the right products for your job. To find out more, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

How To Determine The Need For – And The Size Of – Compressed Air Receiver Tanks

Supply and Demand, in economics, defines the relationship between the volume of commodities that sellers want to exchange for a certain amount of currency, and the volume of said commodities that buyers are willing to exchange a certain (and sometimes different) amount of currency for.  The best chance for an ideal condition is when the volume produced is the same as the volume being consumed.  That typically means both sides are amenable to the same certain amount of currency, and everyone’s happy: the sellers are making a fair profit, and the buyers are paying a fair price.  Thing is, that’s a difficult balance to maintain.  The reasons for imbalances are often debated and usually contentious, and I have no intention of going in to them here.  I only brought up the subject to draw an analogy to the difficulties in maintaining a “supply and demand” balance in the design & operation of compressed air systems.

Just like in economics, we have to consider both sides – supply AND demand – to best maintain this balance.  Also like in economics, there are numerous factors…on both sides…but the two most critical factors are:

  • Compressor capacity control (supply side)
  • System storage (demand side)

My colleague Jordan Shouse wrote an excellent blog on “Air Compressor Motors and Controls, Working Together”, outlining the ‘supply side’ variables, allowing me to concentrate my efforts today on system storage. Distribution piping makes up a certain amount of this, and another great blog from another colleague, Tyler Daniel – “Intelligent Compressed Air: Distribution Piping and Pressure Drop” – gets me off the hook for THAT part of the discussion today.

We can consider the air capacity of system piping to be fixed for the purposes of this discussion, so our “variable” will be the capacity of storage tanks. Let’s start with the reasons for the need for system storage: Strategically placed point-of-use air receivers provide stored energy for intermittent demands.  This enables the compressed air system to handle fluctuating loads, efficiently & reliably.  It also minimizes impact (e.g., sudden and often detrimental drops) on the system pressure.

Next, we’ll look at location. There are a couple of common options to consider:

  • The intermittent demand. Installing a receiver here will provide enough air for short duration, high consumption events, protecting the rest of the system from pressure excursions. Dedicating the receiver to this application will mean isolating it from the rest of the system with a check valve (so it only supplies the load in question) and a needle valve (so recharging the receiver itself, between the intermittent uses, doesn’t adversely affect total system pressure).
  • The critical load(s). Instead of using stored air for the intermittent load, you can also use it for the important loads you’re trying to protect. All sorts of machinery with pneumatic components can “crash” if a nearby intermittent demand starts up & “steals” their air. You’ll use a check valve (same as above), but using a needle valve to throttle the air flow that recharges the receiver risks “starving” the critical load. Don’t do that unless there’s a really good (and likely really specific) reason for it.

Finally, we’re going to do some math, so we know how big this receiver has to be. Here’s the equation we use to do that:

Let’s calculate the receiver size needed to supply an intermittent load of 400 SCFM (C) @80psig (P2), that’ll run for one minute (T). You can use data specific to your system to come up with a value for (Cap) but here I’m going to assume we want the receiver to be able to handle the whole thing, so Cap = 0. I’m also going to assume we’re at sea level, so Pa = 14.7psia and that our compressor’s discharge pressure (the pressure at which the receiver can be charged to) is 120psig (P1):

That’s an awfully big tank. Now, let’s calculate the receiver size needed to protect a critical load that uses 55 SCFM @60psig, and that due to the system design, we can count on 25 SCFM @120psig from the compressor:

This is a much more manageable size, in fact, our 60 Gallon Receiver Tank (Model 9500-60) would be ideal. It’s 20″ in diameter and just over 50″ tall, so it doesn’t take up a lot of floor space. It comes with a drain valve and connections for compressed air flow in & out, pressure gauge, relief valve, etc.

Step Five of our Six Steps To Optimizing Your Compressed Air System: Use intermediate storage near the point of use.

Now, the above example is a completely hypothetical situation, and I purposely chose exaggerated values to show that there can indeed be a clear “winner” in the choice between the two installation points. “Your mileage may vary,” as the car folks say. If you have a situation like this, and would like help in finding the solution that makes the most sense, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Cover image courtesy of: Tennessee Valley Authority; SVG version by Tomia, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons

Installing Secondary Receiver Tanks: Step 5 in Optimizing Your Compressed Air System

SixSteps

The 5th step in the 6 steps to optimizing your compressed air system highlights the use of intermediate storage of compressed air near the point of use. Secondary, or intermediate Receiver tanks are installed in the distribution system to provide a source of compressed air close to the point of use, rather than relying on the output of the compressor.

Compressed air receiver tanks are an integral part to many compressed air distribution systems. Compressed air is stored at a high pressure after drying and filtration, but just upstream of point of use devices. The receiver tank is charged to a pressure higher than what is needed by the system, creating a favorable pressure differential to release compressed air when needed.

Think of a compressed air receiver tank as a “battery”. It stores the compressed air energy within a system to be used in periods of peak demand, helping to maintain a stable compressed air pressure. This improves the overall performance of the compressed air system and helps to prevent pressure drop.

receiver_tank

They can be strategically placed to provide a source of compressed air to intermittent high volume compressed air applications. Rather than having to pull from the compressor, a receiver tank can be sized to provide the short-term volume of air for a particular application. In a previous post, we’ve highlighted how to calculate the necessary receiver tank based on the air consumption and duration of the application.

EXAIR offers from stock a 60-gallon receiver tank designed specifically for these higher-usage intermittent types of applications. Model 9500-60 can be installed near the point of high demand so that you have an additional supply of compressed air available for a short duration. The tank comes with mounting feet and is designed to stand up vertically, saving floor space. The tank meets American Society of Mechanical Engineers (ASME) pressure vessel code.

If you have an application in your facility that’s draining your compressed air system, a receiver tank could be the ideal solution. Give us a call and one of our Application Engineers will be happy to help evaluate your process and determine the most suitably sized receiver tank.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD