Finding Leaks and Saving Money with the Ultrasonic Leak Detector

Locate costly leaks in your compressed air system!  Sounds like the right thing to do.

The EXAIR Ultrasonic Leak Detector is a hand-held, high quality instrument that is used to locate costly leaks in a compressed air system.

Ultrasonic sound is the term applied to sound that is above the frequencies of normal human hearing capacity.  This typically begins at sounds over 20,000 Hz in frequency.  The Ultrasonic Leak Detector can detect sounds in this upper range and convert them to a range that is audible to people.

When a leak is present, the compressed air moves from the high pressure condition through the opening to the low pressure environment.  As the air passes through the opening, it speeds up and becomes turbulent in flow, and generates ultrasonic sound components. Because the audible sound of a small leak is very low and quiet, it typically gets drowned out by by surrounding plant noises, making leak detection by the human ear difficult if not impossible.

ULD_Pr

Detecting a Leak with the Ultrasonic Leak Detector

By using the Ultrasonic Leak Detector, the background noise can be filtered out and the ultrasonic noises can be detected, thus locating a leakage in the compressed air system. There are (3) sensitivity settings, x1, x10, and x100 along with an on/off thumb-wheel for fine sensitivity.  The unit comes with a parabola and tubular extension for added flexibility.

ULD_Kit

Model 9061 – Ultrasonic Leak Detector and Included Accessories

Finding just one small leak can pay for the unit-

A small leak equivalent to a 1/16″ diameter hole will leak approx 3.8 SCFM at 80 PSIG of line pressure.  Using a reasonable average cost of $0.25 per 1000 SCF of compressed air generation, we can calculate the cost of the leak as follows-

Capture

It is easy to see that utilizing the Ultrasonic Leak Detector, and identifying and fixing leaks is the right thing to do.  It is possible to find and fix enough leaks that a new compressor purchase can be avoided or an auxiliary back-up is not needed any more.

If you have questions regarding the Ultrasonic Leak Detector, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

The Cost of Compressed Air Leaks Create the Need to Find and Fix

Leaks can cost you

As margins get tighter and cost of manufacturing climbs, industries are looking into other areas to be more economical.  A big focus today is in the compressed air systems.  Compressed air is considered to be the “forth” utility behind gas, water, and electricity.  It is a necessary system to run pneumatic systems, but it is the least efficient of the utilities.  For every $1.00 that is put into making compressed air, you only get roughly 5¢ of work from it.  So, it is very important to use this utility as efficiently as possible.

One of the largest problems affecting compressed air systems is leaks.  That quiet little hissing sound coming from the pipe lines is costing the company much money.  A university study was conducted to find the percentage of air leaks in a typical manufacturing plant.  In a poorly maintained system, they found on average that 30% of the compressor capacity is lost through air leaks.  In relation to the amount of electricity required to make compressed air, for every ten power plants producing electricity, there is one power plant producing electricity just for air leaks.  A majority of companies do not have a leak prevention program; so, many of these companies have poorly maintained systems. This creates a large amount of waste caused by simple air leaks.  To put a dollar value on it, a leak that you cannot physically hear can cost you as much as $130/year.  That is just for one inaudible leak in hundreds of feet of compressed air lines.  For the leaks that you can hear, you can tell by the chart below the amount of money that can be wasted by the size of the hole.  Unlike a hydraulic system, compressed air will not leave a tell-tale sign of a leak. You have to locate them by some other means.

**Note 1

Most leaks occur where you have threaded fittings, connections, hoses, and pneumatic components like valves, regulators, and drains.  The Optimization products from EXAIR are designed to help optimize your complete compressed air system.  The most effective way is to find and eliminate air leaks, and EXAIR has two products that can help do this.  The Ultrasonic Leak Detectors can find the air leaks, and the Digital Flowmeters can monitor your system for air leaks.  With both of these products included in a leak prevention program, you will be able to keep your compressed air system running optimally and reduce the wasted cost in air leaks and overusing the air compressor.

EXAIR Ultrasonic Leak Detector:

When a leak occurs, it emits an ultrasonic noise caused by turbulence.  These ultrasonic noises can be at a frequency above that which is audible for human hearing.  The EXAIR Ultrasonic Leak Detector can pick up these frequencies and make the leaks audible.  With three sensitivity ranges and LED display, you can find very minute leaks in your compressed air system.  It comes with two attachments; the parabola to locate leaks up to 20 feet away, and the tube attachment to define the exact location in the pipe line.  Once you find a leak, it can be marked for fixing.

EXAIR’s Digital Flowmeter w/ USB Data Logger

EXAIR Digital Flowmeter:

With the Digital Flowmeters, you can continuously monitor for waste.  Air leaks can occur at any time within any section of your pneumatic area.  You can do systematic checks by isolating sections with the Digital Flowmeter and watching for a flow reading.  Another way to monitor your system would be to compare the results over time.  With the Digital Flowmeters, we have a couple of options for recording the air flow data.  We have the USB Datalogger for setting certain time increments to record the air flows.  Once the information is recorded, you can connect the USB to your computer, and with the downloadable software, you can view the information and export it into an Excel spread sheet.  We also offer a wireless capability option with the Digital Flowmeters.  You can have multiple flow meters communicating through a gateway to monitor and record the flow information onto your computer system.  If you find that the flow starts trending upward for the same process, then you know that you have a leak.  It can also give you a preventive measure if your pneumatic system is starting to fail.

Compressed air leaks will rob you in performance, compressor life, and electrical cost.  It is important to have a leak prevention program to check for leaks periodically as they can happen at any time.  The EXAIR Ultrasonic Leak Detector and the Digital Flowmeters will help you accomplish this and optimize your compressed air system.  Once you find and fix all your leaks, you can then focus on improving the efficiency of your blow-off devices with EXAIR products and save yourself even more money.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

**Note 1: Chart was published by Compressed Air Challenge in April 1998 – Rev. 0

The Importance Of Air Compressor System Maintenance

 

It should go without saying, but proper operation of anything that has moving parts will depend on how well it’s maintained.  Compressed air systems are certainly no exception; in fact; they’re a critical example of the importance of proper maintenance, for two big reasons:

*Cost: compressed air, “the fourth utility,” is expensive to generate.  And it’s more expensive if it’s generated by a system that’s not operating as efficiently as it could.

*Reliability: Many industrial processes rely on clean or clean & dry air, at the right pressure, being readily available:

  • When a CNC machine trips offline in the middle of making a part because it loses air pressure, it has to be reset.  That means time that tight schedules may not afford, and maybe a wasted part.
  • The speed of pneumatic cylinders and tools are proportional to supply pressure.  Lower pressure means processes take longer.  Loss of pressure means they stop.
  • Dirt & debris in the supply lines will clog tight passages in air operated products.  It’ll foul and scratch cylinder bores.  And if you’re blowing off products to clean them, anything in your air flow is going to get on your products too.

Good news is, the preventive maintenance necessary to ensure optimal performance isn’t all that hard to perform.  If you drive a car, you’re already familiar with most of the basics:

*Filtration: air compressors don’t “make” compressed air, they compress air that already exists…this is called the atmosphere, and, technically, your air compressor is drawing from the very bottom of the “ocean” of air that blankets the planet.  Scientifically speaking, it’s filthy down here.  That’s why your compressor has an inlet/intake filter, and this is your first line of defense. If it’s dirty, your compressor is running harder, and costs you more to operate it.  If it’s damaged, you’re not only letting dirt into your system; you’re letting it foul & damage your compressor.  Just like a car’s intake air filter (which I replace every other time I change the oil,) you need to clean or replace your compressor’s intake air filter on a regular basis as well.

*Moisture removal: another common “impurity” here on the floor of the atmospheric “ocean” is water vapor, or humidity.  This causes rust in iron pipe supply lines (which is why we preach the importance of point-of-use filtration) and will also impact the operation of your compressed air tools & products.

  • Most industrial compressed air systems have a dryer to address this…refrigerated and desiccant are the two most popular types.  Refrigerant systems have coils & filters that need to be kept clean, and leaks are bad news not only for the dryer’s operation, but for the environment.  Desiccant systems almost always have some sort of regeneration cycle, but it’ll have to be replaced sooner or later.  Follow the manufacturer’s recommendations on these.
  • Drain traps in your system collect trace amounts of moisture that even the best dryer systems miss.  These are typically float-operated, and work just fine until one sticks open (which…good news…you can usually hear quite well) or sticks closed (which…bad news…won’t make a sound.)  Check these regularly and, in conjunction with your dryers, will keep your air supply dry.

*Lubrication: the number one cause of rotating equipment failure is loss of lubrication.  Don’t let this happen to you:

  • A lot of today’s electric motors have sealed bearings.  If yours has grease fittings, though, use them per the manufacturer’s directions.  Either way, the first symptom of impending bearing failure is heat.  This is a GREAT way to use an infrared heat gun.  You’re still going to have to fix it, but if you know it’s coming, you at least get to say when.
  • Oil-free compressors have been around for years, and are very popular in industries where oil contamination is an unacceptable risk (paint makers, I’m looking at you.)  In oiled compressors, though, the oil not only lubricates the moving parts; it also serves as a seal, and heat removal medium for the compression cycle.  Change the oil as directed, with the exact type of oil the manufacturer calls out.  This is not only key to proper operation, but the validity of your warranty as well.

*Cooling:  the larger the system, the more likely there’s a cooler installed.  For systems with water-cooled heat exchangers, the water quality…and chemistry…is critical.  pH and TDS (Total Dissolved Solids) should be checked regularly to determine if chemical additives, or flushing, are necessary.

*Belts & couplings: these transmit the power of the motor to the compressor, and you will not have compressed air without them, period.  Check their alignment, condition, and tension (belts only) as specified by the manufacturer.  Keeping spares on hand isn’t a bad idea either.

Optimal performance of your compressed air products literally starts with your compressor system.  Proper preventive maintenance is key to maximizing it.  Sooner or later, you’re going to have to shut down any system to replace a moving (or wear) part.  With a sound preventive maintenance plan in place, you have a good chance of getting to say when.

If you’d like to talk about other ways to optimize the performance of your compressed air system,  give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

 

Image courtesy of U.S. Naval Forces Central Command/U.S. Fifth Fleet, Creative Commons License 

It’s Earth Day! Do Your Part Tomorrow and Throughout the Year.

Saturday, April 22nd marks the 47th annual Earth Day and it will be observed in over 193 countries.  For EXAIR, this year marks our 34th year helping compressed air users save compressed air energy and electrical resources. It is also another year that we continue to focus on manufacturing our products with minimal impact and doing our part to help protect our planet. We are proud to manufacture efficient products, implement processes and programs throughout our facility to help use our resources wisely and recycle everything we possibly can. 

First and foremost, we manufacture and sell Intelligent Compressed Air Products that are specifically designed to reduce the use of compressed air throughout facilities.  On top of that, when you purchase an EXAIR product it will arrive in fully recyclable packaging and, in most cases, is made from a material that will be recyclable should it reach a point it is no longer useful.

EXAIR recycles 100% of the metal scrap from our machining processes, which equates to 6.5 tons. Our cardboard and mixed paper products are also recycled 100%. Of the waste we place into our trash dumpsters – 80% is recycled and 20% is sent to the landfill.  The paper products even get down to all of paper towels that are used and all the scratch paper that the office utilizes.   In total, EXAIR recycled tons 36.6 tons of paper and cardboard in 2016 which equates to 80% of the solid waste we produce is recycled.  We focus on more ways to improve this percentage every year (I am still trying to convince everyone to reuse the coffee and filters in the coffee maker).  Something about it got so thick you needed a spoon to “drink” your coffee.

Another waste reducing factor that has proven to work out well for EXAIR is asking every customer if they accept digital invoices rather than requiring them to be printed and mailed.   Thanks to our wonderful customers we have been able to eliminate 91% of all printed and mailed invoices which helps to reduce our resources used as well as the amount of materials that are possibly turned into solid wastes at their facilities. This also prevents the gas and vehicles necessary to deliver all of these invoices by mail. 

We also generate and recycle our wastewater for reclamation – in 2016 we recycled 1008 gallons. 

To get back to what EXAIR products have done to help reduce waste, we were also able to optimize our own compressed air system by eliminating air leaks and have saved 1 million cubic feet of compressed air.  We have also utilized our very own Chip Trapper Systems in our manufacturing areas and extended the water soluble coolant life from 6 weeks per changeover to 6 months per changeover. Keeping our coolant clean allows us to minimize the total amount of wastewater we recycle each year. 

On top of all the efforts above, we also continue to maintain RoHS compliance on all electronic products, as well as actively track our supply chains to ensure no Conflict Minerals are being sourced from the Democratic Republic of Congo.

If you have any questions on how we can help your facility reduce their use of compressed air or why we continue to reduce our wastes and increase our recycling efforts, contact us.

To see our full Sustainability Plan follow this link.

Enjoy Your Weekend,
EXAIR Corporation

Thank you to Kate Ter Haar for the Happy Earth Day image. Creative Commons License. 

Stainless Steel Super Air Knife Solves Problem In Molding Application

3

These stainless steel molds have residual material after forming which needs to be blown off

 

2

The table of this machine spins, with identical mold setups in the front and rear

The images above show a molding machine process with a spinning table.  The “front” side of the setup is used to remove finished product, while the “back” side forms new product over the stainless steel mold.  Each side of the table uses an identical setup with application temperatures as high as 140°F.

The end user of this machine contacted EXAIR in search of a blowoff solution to be permanently installed and operated automatically.  Any solution offered needed to use minimal compressed air, meet OSHA safety standards for dead end pressure (OSHA CFR 1910.242(b)), and be suitable for installation in a 140°F workspace.

The purpose of the blowoff would be to remove any debris/residual material left on the stainless steel mold after the finished product is removed.  So, as the mold spins back into the machine, they wanted a way to remove any burrs or residual debris.  The current process is to stop the machine and have a machine operator blow off the molds by hand (shown below).  This reduces the efficiency of the machine and reduces the throughput of the process.

1

The current process is to stop the machine and blow off the molds by hand

With the full scope of the application uncovered and discussed, we found the perfect solution for this application in a stainless steel Super Air Knife.  The stainless steel Super Air Knife can provide an efficient and repeatable blowoff solution, all while meeting OSHA safety standards and the temperature needs of the application.  Plus, the Super Air Knife can be configured alongside a PLC or Electronic Flow Controller to allow for a “trigger-on” installation in which blowoff is only provided when needed.  This setup saves compressed air, reducing operational cost and further increasing efficiency in the application.

The exact product used in this application was the model 110012SS, which provides a laminar blowoff 12” wide using a 303 grade stainless steel Super Air Knife.  But, we also have knives ranging from 3” to 108” with the ability to machine custom lengths upon request.  So, if you have an application in need of an efficient and laminar blowoff solution, reach out to us.  We’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Super Air Knives Clean Slide Ways, Rails and Tracks of Machinery

Until a few days ago I was relatively unfamiliar with flying cold saws, their operation, and purpose.  I knew they were used in manufacturing, particularly with regards to piping, but had no real idea as to how or why.

So, when prompted with a need to examine an application for a flying cold saw, I thought to find a schematic or video online.  Thankfully, I found the video above of the exact machine being used in the application, and it helped me to fully understand the application needs.

What was needed, was a method to keep the rails of the flying saw clean and clear of debris created during the cutting process.  There is a waste material removal system incorporated into the saw, but it cannot prevent stray scrap material from deflecting during cutting and landing on the rails used to position the saw.

We’ve found success in similar applications using Super Air Knives to clear debris off slide ways on large CNC machines and from the tracks for rail cars, so I felt confident we could find a solution here.  In selecting the proper air knife for this application we considered size (width) of the rails, ambient temperature, and required force from the knife.  This application uses 6″ rails in a typical factory setting (with ambient temperatures up to 110F max), with small stainless steel debris on the rails – a “perfect” fit for the aluminum 6″ Super Air Knife, model 110006.

This customer chose to use (4) 110006 Super Air Knives, two on each side of the knife used on the leading edge and on the trailing edge.  Limit switches of the saw will trigger the air knives positioned on the leading edge to turn on, clearing debris from the rails as the saw travels back and forth.

This was a great application for use with Super Air Knives, and we were happy to help solve the customer’s problem.  If you have a similar application, give us a call, send us an email, or use our online chat feature to contact an Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Video Blog: Super Air Knife with Plumbing Kit Installed

 

This short video features our new Stainless Steel Plumbing kits. Ordering a Super Air Knife with the Plumbing Kit installed, provides the best performance and makes for an easy installation.

 

 

Please contact an application engineer for assistance @ 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

%d bloggers like this: