Exploring Optimization: Standards And Certifications For Compressed Air Audits

EXAIR Corporation has devoted almost 37 years to manufacturing engineered products aimed at the most efficient, quietest, and safest use of compressed air.  Sometimes, a caller has recognized that an open pipe blow off, for example, is loud, wasteful, and unsafe, and just wants to install an engineered product that they know will be an improvement.  They may not be interested in precisely quantifying the savings…they’ll just notice that their lone air compressor runs less, and their electric bill isn’t as high anymore.

Others, however, may have a compressed air system that comprises multiple compressors, with advanced controls, and they may have specific operational goals in regard to how the individual compressors are loaded and controlled, or maybe even eliminating the need to run particular compressors all the time…or at all.

The skills & knowledge necessary to handle such a task are within the confines of discipline of mechanical engineering, but oftentimes, specialized training is needed to effectively conduct an audit in order to formulate an execute such an optimization plan.  If you’re interested in pursuing this training, or working with trained personnel, here’s a brief description of the training that’s available, and how you can find people that have been through it:

  • The American Society of Mechanical Engineers (ASME) publication “Guidance for ASME EA-4, Energy Assessment for Compressed Air Systems” details the requirements for performing an audit.  Since there are so many configurations of compressed air systems, it’s not a “step by step” procedure, but it IS handy for developing one, if you know how.  Speaking of which…
  • The Compressed Air & Gas Institute (CAGI) offers training & certification in two categories:
    • Certified Compressed Air System Specialists (CCASS) – these are qualified experts who have demonstrated competence (by means of a comprehensive examination) in skills and abilities relating to the design, service, sales, and installation of compressed air systems & equipment.
    • Certified Compressed Air System Assessors (CCASA) – in addition to CCASS certification, these individuals has passed another comprehensive examination, verifying their knowledge and skills as practitioners performing assessments (audits) of compressed air systems.

Both of these certifications comply with the ISO 17024 Conformity Assessment standard, which governs General Requirements for Bodies Operating Certification of Persons in any field of endeavor.  This means that, not only have certified personnel all passed the same tests regardless of where they are, but the tests they’ve passed meet stringent standards for examining knowledge level and competence in these fields.

Bottom line: if you want an in-depth, accurate evaluation of the efficiency of your compressed air system, experts are available.  The Compressed Air & Gas Institute even publishes directories so you can find them in your area.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Protecting Employees With PPE vs. Engineered Controls and Substitution

PPE has been a hot topic and new buzzword for a lot of people and throughout many industries over the past 6 months, and rightfully so. When you look at manufacturing though, PPE has been a buzzword for decades. We continue to evolve processes, equipment, and wearables to ensure the safety of operators.  It all boils down to the fact that PPE and the equipment have to be used, and used appropriately in order to be effective.

When reviewing the CDC’s guides for Hierarchy of Controls the least effective method to protect workers is PPE that they must implement and wear/use properly. The fact is, PPE is one of the cheaper entry levels to get to safe working conditions upfront. However, the cost of ownership can quickly surpass more effective methods of providing safe conditions for operators, such as installation of engineered controls or even substituting the hazard w/ engineered solutions.

CDC’s Hierarchy of Controls

 

So what exactly does that mean to the people on the shop floor? Rather than having to grab a set of pinch and roll earplugs every day on the way through the breezeway to get to the production line, permanently installing quiet products like Super Air Nozzles or Super Air Knives in place of open-ended pipes and drilled pipe blowoffs could eliminate the need for these uncomfortable nuisances. And reliance on personnel to use them correctly, or use them at all is a gamble.

How else can EXAIR help in this pursuit of operator safety and happiness? We offer a free service, the EXAIR Efficiency Lab, which will test your current blow-off products for force, flow, air consumption and noise level. We then recommend an engineered solution if we can improve upon those parameters (spoiler alert, we can) that will meet or exceed OSHA standards for dead-end pressure and allowable noise level exposure.

EXAIR’s Free Efficiency Lab

For this example, installing a quiet product to aid in lowering noise levels can create an environment that no longer needs PPE for protecting personnel. The fix is permanent and eliminates forgotten, lost or broken PPE and the expensive associated with them.

If you would like to discuss any of these options further, please let me know.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Engineered Air Nozzles Keep Your Operations Safe

If you are looking for a way to save money and make your blow off applications safer, look no further than EXAIR’s Engineered Air Nozzles & Jets. By upgrading your blowoff, cooling, and drying operations to use one of our Super Air Nozzles or Jets you can save as much as 80% of your compressed air usage when compared with an inefficient solution. Plus you can remove open ended pipes and other unsafe blow offs that OSHA will fine you for.

IMG_8150

 

An open copper pipe or tube, even if “flattened” as we commonly see, wastes an excessive amount of compressed air. This wasted compressed air can create problems in the facility due to unnecessarily high energy costs, maintaining system pressure that can affect other processes and excessive noise exposure for personnel. An open pipe or tube will often produce sound levels in excess of 100 dBA. At these sound levels, according to OSHA, permanent hearing damage will occur in just 2 hours of exposure.

osha

By simply replacing the open tubes and pipe with an EXAIR Super Air Nozzle, you can quickly reduce air consumption AND reduce the sound level. Sound level isn’t the only thing an OSHA inspector is going to be concerned about regarding an open pipe blowoff, in addition OSHA 1910.242(b) states that a compressed air nozzle used for blowoff or cleaning purposes cannot be dead-ended when using with pressures in excess of 30 psig. I don’t know if you’ve ever tried to use an air gun with 30 psig fed to it, but the effectiveness of it is dramatically reduced. This is why there needs to be a device installed that’ll prevent it from being dead-ended so that you can operate at a higher pressure.

sag-osha-compliant

EXAIR’s Super Air Nozzles are designed for maximum performance and safety. The engineered features keep EXAIR nozzles running quietly, and cannot be dead-ended. Using an OSHA compliant compressed air nozzle for all points where a blowoff operation is being performed should be a priority. Each individual OSHA infraction will result in a fine if you’re surprised with an OSHA inspection. Inspections are typically unannounced, so it’s important to take a look around your shop and make sure you’re using approved products.

You’ll find all of the tools you need in the EXAIR catalog. Click here if you’d like a hard copy sent directly to you! Or, get in touch with us today to find out how you can get saving with an Intelligent Compressed Air Product.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

The Bernoulli Principle

When catapults would hurl stones and projectiles at castles there weren’t thinking of how the stones flew or what could make them fly better, often they went with the “Tim Taylor method” of MORE POWER.  It wasn’t until thousands of years later that mathematicians started to talk about gases and liquids and how they react to different scenarios. Things like how does air react to a stone being launched through it. Johann Bernoulli played a significant role and calculated a lot of this out throughout his life and discovered what is now called the Bernoulli Principle.

Bernoulli discovered that when there is an increase in the speed of a fluid, a simultaneous decrease in fluid pressure occurs at the same time. This is what explains how a plane’s wing shape matters. It also can showcase how a curveball coming into the strike zone can fall out and cause an outlandish “STTTeeerriike Three” from the umpire. It is also sometimes confused with the Coandă effect. While both effects have a tremendous impact on our modern lives, the best way I have learned these effects is through videos such as the one below.

As mentioned within the video, there are numerous effects that can closely relate to the Bernoulli effect, the best example I see is the curveball which when implemented correctly can cause a very upset batter, while the pitcher has the game of his or her career.

If you would like to talk about some scientific discoveries that have you puzzled, or if you want to figure out how we can use one of these effects to help your application, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Video Source: Fizzics Organization – 10/8/2014 – retrieved from https://www.youtube.com/watch?v=-c_oCKm5FLU&list=PLLKB_7Zd6leNJmORn6HHcF78o2ucquf0U