Heat Recovery from an Air Compressor

On the whole most of us are quite aware of the considerable savings that can be accomplished by wise use and recovery of energy.   One way that a plant can save substantially is to capture the energy that an electric motor adds to the compressed air from the air compressor.  As much as 80% to 93% of the electrical energy used by an industrial air compressor is converted to heat.  A properly designed heat recovery system can capture anywhere between 50% to 90% of this energy and convert it to useful energy.

The heat recovered is sufficient in most cases to use in supplemental ways such as heating water and space heating, however generally there is not enough energy to produce steam directly.

IngersollRand_R-series-R110
Ingersoll Rand Rotary Screw Compressor

 

Packaged air cooled rotary screw compressor lend themselves easily to heat recovery, supplemental heating or other hot air uses very well due to their enclosed design.  Since ambient air is directed across the compressors aftercooler and lubricant cooler where the heat can be easily collected from both the compressed air and the lubricant.

Packaged coolers are normally enclosed cabinets that feature integral heat exchangers and fans.  This type of system only needs ducting and an additional fan to minimize back pressure on the air compressors cooling fan.  This arrangement can be controlled with a simple thermostat operated vent on a hinge and when the extra heat is not required it can be ducted outside the facility.

The recovered energy can be used for space heating, industrial drying, preheating aspirated air for oil burners or  other applications requiring warm air.  Typically there is approximately 50,000 Btu/Hr of energy available from each 100 SCFM of capacity (at full load).  The temperature differential is somewhere between 30°F – 40°F above the air inlet temperature and the recovery efficiency is commonly found to be 80% – 90%.

We all know the old saying there is “no free lunch” and that principle applies here.  If the supply air is not from outside the plant a drop in the static pressure could occur in the compressor cabinet thereby reducing the efficiency of the compressor.  If you choose to use outside air for makeup, you might need some return air to keep the air above freezing to avoid compressor damage.

Heat recovery is generally not utilized with water cooled compressors since an extra stage of heat exchange is required and the efficiency of recovering that heat is normally in the 50% – 60% range.

To calculate annual energy savings:

Energy Savings (Btu/Yr) = 0.80 * compressor bhp * 2,545 Btu/bhp-hour * hours of operation.

If we consider a 50 HP compressor:

.080 * 50bhp * 2,545 Btu/bhp-hour * 2080 hrs/year =  211,744,000 Btu/yr

Where 0.80 is the recoverable heat as a percentage of the units output, 2,545 is the conversion factor.

Cost savings in dollars per year = [(energy savings in Btu/yr)/Btu/fuel) x ($/unit fuel)]/primary heater efficiency.

If you would like to discuss saving money by reducing compressed air demand and/or any EXAIR product,  I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Photo courtesy of CC BY 3.0, https://en.wikipedia.org/w/index.php?curid=32093890

 

 

Celebrate Earth Day 2018!

Earth Day is one of those days not everyone is aware happens, even with all of the news and notable facts about our resources and pollution. EXAIR is committed to raising awareness of Earth Day and encourages everyone to find an activity which produces action in the spirit of Earth Day. For example, could you help clean up a riverbank in your town, or plant some trees in a park, or recycle your household plastic/glass/aluminum/cardboard? The Earth Day website has a bunch of great suggestions for you to make a difference.

Volunteers help cleanup

At my home, we recycle our glass, metal, plastic and cardboard. At EXAIR we continue to make progress in reducing our overall footprint as well.

Sunday, April 22nd marks the 48th annual Earth Day and it will be observed in 192 countries. For EXAIR, this year marks our 35th year helping compressed air users save compressed air energy and electrical resources. It is also another year that we continue to focus on manufacturing our products with minimal impact and doing our part to help protect our planet. We are proud to manufacture efficient products, implement processes and programs throughout our facility to help use our resources wisely and recycle everything we possibly can.

First and foremost, we manufacture and sell Intelligent Compressed Air Products that are specifically designed to reduce the use of compressed air throughout facilities. On top of that, when you purchase an EXAIR product it will arrive in fully recyclable packaging and, in most cases, is made from a material that will be recyclable should it reach a point it is no longer useful.

In the past year we have improved the efficiency of our computers and computer servers which require fewer Kilowatt hours (KWH) per day . We have been able to reduce KWH/day by over 56%! This reduces our impact on the local electricity provider and further shrinks our impact upon precious resources.

EXAIR recycles 100% of the metal scrap from our machining processes, which equates to 6.5 tons. Our cardboard and mixed paper products are also recycled 100%. Of the waste we place into our trash dumpsters – 80% is recycled and 20% is sent to the landfill. The paper products even get down to all of paper towels that are used and all the scratch paper that the office utilizes. In total, EXAIR recycled 35.4 tons of paper and cardboard in 2017. We focus on more ways to improve this percentage every year.

Another waste reducing factor that has proven to work out well for EXAIR is asking every customer if they accept digital invoices rather than requiring them to be printed and mailed. Thanks to our wonderful customers we have been able to eliminate 91% of all printed and mailed invoices which helps to reduce our resources used as well as the amount of materials that are possibly turned into solid wastes at their facilities. This also prevents the gas and vehicles necessary to deliver all of these invoices by mail.

To get back to what EXAIR products have done to help reduce waste, we were also able to optimize our own compressed air system by eliminating air leaks and have saved 1 million cubic feet of compressed air. We have also utilized our very own Chip Trapper Systems in our manufacturing areas and extended the water soluble coolant life from 6 weeks per changeover to 6 months per changeover. Keeping our coolant clean allows us to minimize the total amount of wastewater we recycle each year.

We continued to reduce our wastewater for reclamation – in 2017 we recycled 795 gallons, a reduction of 213 gallons compared to 2016, due to extending the life of our coolant.

On top of all the efforts above, we also continue to maintain RoHS compliance on all electronic products, as well as actively track our supply chains to ensure no Conflict Minerals are being sourced from the Democratic Republic of Congo.

If you have any questions on how we can help your facility reduce their use of compressed air or why we continue to reduce our wastes and increase our recycling efforts, contact us.

To see our full Sustainability Plan follow this link.

Enjoy Your Weekend,
EXAIR Corporation

 

Thank you to Kate Ter Haar for the Happy Earth Day image. Creative Commons License.
Thank you to AFS-USA Intercultural Programs for the volunteer image. Creative Commons License. 

Fluidics, Boundary Layers, And Engineered Compressed Air Products

Fluidics is an interesting discipline of physics.  Air, in particular, can be made to behave quite peculiarly by flowing it across a solid surface.  Consider the EXAIR Standard and Full Flow Air Knives:

Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces serve to optimize the entrainment of air (4) from the surrounding environment.

If you’ve ever used a leaf blower, or rolled down the car window while traveling at highway speed, you’re familiar with the power of a high velocity air flow.  Now consider that the Coanda effect can cause such a drastic redirection of this kind of air flow, and that’s a prime example of just how interesting the science of fluidics can be.

EXAIR Air Amplifiers, Air Wipes, and Super Air Nozzles also employ the Coanda effect to entrain air, and the Super Air Knife employs similar precision engineered surfaces to optimize entrainment, resulting in a 40:1 amplification ratio:

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

As fascinating as all that is, the entrainment of air that these products employ contributes to another principle of fluidics: the creation of a boundary layer.  In addition to the Coanda effect causing the fluid to follow the path of the surface it’s flowing past, the flow is also affected in direct proportion to its velocity, and inversely by its viscosity, in the formation of a boundary layer.

High velocity, low viscosity fluids (like air) are prone to develop a more laminar boundary layer, as depicted on the left.

This laminar, lower velocity boundary layer travels with the primary air stream as it discharges from the EXAIR products shown above.  In addition to amplifying the total developed flow, it also serves to attenuate the sound level of the higher velocity primary air stream.  This makes EXAIR Intelligent Compressed Air Products not only as efficient as possible in regard to their use of compressed air, but as quiet as possible as well.

If you’d like to find out more about how the science behind our products can improve your air consumption, give me a call.

Replacing Liquid Nozzles with Engineered Air Nozzles

I wrote a blog a few weeks ago about increasing efficiency with EXAIR Super Air Nozzles.  In the application for that blog we used engineered nozzles to place open pipes, resulting in an efficiency increased of ~65%.  This week’s installment of efficiency improvements boasts similar figures, but through the replacement of misused liquid nozzles rather than open pipe.

The image above shows a compressed air manifold with a number of nozzles.  BUT, the nozzles in this manifold are not compressed air nozzles, nor do they have any engineering for the maximization of compressed air consumption.  These are liquid nozzles, usually used for water rinsing.

In this application, the need was to blow off parts as they exit a shot blasting machine.  When the parts exit the shot blasting process they are covered in a light dust and the dust needs to be blown away.  So, the technicians on site constructed the manifold, finding the liquid nozzles on hand during the process.  They installed these nozzles, ramped up the system pressure to maintain adequate blow off, and considered it finished.

And, it was.  At least until one of our distributors was walking through the plant and noticed the setup.  They asked about compressed air consumption and confirmed the flow rate of 550 m³/hr. (~324 SCFM) at 5 BARG (~73 PSIG).

The end user was happy with the performance, but mentioned difficulty keeping the system pressure maintained when these nozzles were turned on.  So, our distributor helped them implement a solution of 1101SS Super Air Nozzles to replace these inappropriately installed liquid nozzles.

By implementing this solution, performance was maintained and system pressure was stabilized.  The system stabilization was achieved through a 61% reduction in compressed air consumption, which lessened the load on the compressed air system and allowed all components to operate at constant pressure.  Calculations for this solution are shown below.

Existing compressed air consumption:  550 m³/hr. (324 SCFM) @ 6 BARG (87 PSIG)

Compressed air consumption of (9) model 1101SS @ 5.5 BARG (80 PSIG):  214 m³/hr. (126 SCFM)

Total compressed air consumption of 1101SS Super Air Nozzles:

Air consumption of 1101SS nozzles compared to previous nozzles:

Engineered air nozzles saved this customer 61% of their compressed air, stabilized system pressure, improved performance of other devices tied to the compressed air system, and maintained the needed performance of the previous solution.  If you have a similar application or would like to know more about engineered compressed air solutions, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Super Air Knife – Free Air Via a 40:1 Amplification Ratio

Intelligent Use of Compressed Air – Most industrial facilities have at least one air compressor.  The compressor is used to power anything from pneumatic tools, air powered equipment, compressed air cylinders, blowoffs and many more types of operations.  Improper use of compressed air can lead to unnecessary energy costs, high noise levels and dangerous exposure of personnel to high pressure air.

The EXAIR Super Air Knife uses only 1/3 of the compressed air of typical blowoffs.

LSAKpr_2mb
Long Super Air Knife with Plumbing Kit Installed and using the model 9060 Universal Air Knife Mounting Kit to Blowoff Laser Cutting Debris

By taking advantage of the Super Air Knife’s highly efficient design and the action of air entertainment, the Super Air Knife draws in large amounts of surrounding free outside air into the air stream. The result is a strong powerful air flow made up of a small amount of compressed air and a large amount of ambient air.

Capture

  • Compressed air flows through an inlet (1) into the plenum chamber of the Super Air Knife. The flow is directed to a precise slotted orifice. As the primary airflow exits the thin slotted nozzle (2), it follows a flat surface that directs the airflow in a perfectly straight line.  This creates a uniform sheet of air across the entire length of the Super Air Knife. Velocity loss is minimized and force is maximized as room air (3) is entrained into the primary air stream at a ratio of 40:1.  The result is a well defined sheet of laminar airflow with hard-hitting force and minimal wind shear is delivered.

By using a Super Air Knife – and the advantage of the high amplification via air entertainment – for part blowoff, cooling, or drying you can reduce energy costs, reduce noise levels, and eliminate harmful dead end pressures. Other air knives typically entrain surrounding air at a ratio of 30:1 or less.

EXAIR offers the Super Air Knife with materials of construction of aluminum, Types 303 and 316 Stainless Steel, and PVDF to cover a wide variety of application temperatures and environments. Other materials may be possible, pending review by our Product Design Engineers. The Super Air Knives are offered as the knife only, as part of a full kit, which also includes a shim set, auto drain filter separator, and pressure regulator.  The Super Air Knife can be fitted with Plumbing Kits and/or Electronic Flow Control making installation easier and help to save on air usage.

If you have questions about Super Air Knives, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Increasing Efficiency With EXAIR Super Air Nozzles

Earlier this morning I received a phone call from a gentleman in search of a more efficient compressed air solution.  The application was to remove thermoformed plastics from a mold immediately after the mold separates.  In the current state, the application is consuming ~40% of the available compressed air in the facility through the use of (9) ¼” open pipes, consuming a confirmed 288 SCFM at 60 PSIG.  Due to the use of an open pipe, this customer was facing a safety and noise concern through the existing solution.

After discussing the application need and the desire to reduce compressed air use, reduce noise, and add safety, we found a suitable solution in the 1101 Super Air NozzleInstalling (9) of these EXAIR nozzles will reduce the compressed air consumption by over 65%!!!  Calculations for this savings are below.

Existing compressed air consumption:  288 SCFM @ 60 PSIG

Compressed air consumption of model 1101 @ 60 PSIG:  11 SCFM

Total compressed air consumption of  (9) 1101 nozzles:

Air savings:

This is the percentage of air which the new EXAIR solution will consume.  To put it another way, for every 100 SCFM the current solution consumes, the EXAIR solution will only require 34.38 SCFM. Installing these EXAIR nozzles will result in lower operational cost, lower noise levels, and increased safety for this customer – all while maintaining or improving the performance of the blow off solution in this application.

EXAIR Application Engineers are well versed in maximizing efficiency of compressed air systems and blow off needs.  If you have an application with a similar need, contact an EXAIR Application Engineer.  We’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Monitor Your Compressed Air System With EXAIR’s Digital Flowmeters

A topic that we’ve talked about here on the EXAIR blog discusses the costs of compressed air and how to use it more efficiently. How can you determine the costs of your compressed air? The first step you’ll need to take is to quantify the flow. In order to do that you’ll need a measurement tool such as the EXAIR Digital Flowmeter.

dfm_sizes
EXAIR’s family of Digital Flowmeters

The Digital Flowmeter is available from stock for use on Schedule 40 pipe with sizes ranging from ½”-4” I.D. Sizes up to 6” for Schedule 40 and ¾”-4” for copper pipe are also available. With a digital readout display, it’s easy to accurately monitor your compressed air usage throughout the facility. Creating a baseline of your usage will allow you to understand your compressed air demand, identify costly leaks, and replace inefficient air products.

The Digital Flowmeter installs in minutes with help from a drill guide and locating fixture to assist in mounting the Digital Flowmeter to the pipe. Two flow sensing probes are inserted into the drilled holes in the pipe. The meter then seals to the pipe once tightened. There is no need to cut, weld, or do any calibration once it is installed. With blocking rings also available, installation can be permanent or temporary.

The newest addition to this product line is the Digital Flowmeter with wireless capability. Using a ZigBee® mesh network protocol, data is transmitted to an Ethernet connected gateway. This allows you to mount the Digital Flowmeter in areas that you may not be able to easily access and wirelessly monitor and graph the usage with the EXAIR Logger software. Take a peek at this video blog for a demonstration of the use of a wireless Digital Flowmeter software to compare an open pipe to an engineered Air Nozzle.

wirelessdfmpr2_1670x574

In addition to communicating wirelessly with the gateway, the Digital Flowmeters can “piggyback” off of each other to extend their range. Each meter has a range of 100’. Using multiple Digital Flowmeters within the same ZigBee® mesh network, data can be passed from meter to meter to extend the distance over which the meters can operate. These can be installed on each major leg of your compressed air system to continuously monitor usage throughout the facility.

If you’d rather go with a hard-wired data collection method, the Digital Flowmeter is also available with a USB Data Logger. Simply remove the Data Logger from the Digital Flowmeter and connect it to the USB port of your computer. The data can then be viewed directly in the accompanying software or exported into Microsoft Excel.

dataloggerPRce_559wide
Digital Flowmeter w/ USB Data Logger installed

If you’d like to get a clear view of your compressed air usage, give us a call. An Application Engineer will be happy to work with you and get the proper Digital Flowmeters installed in your facility!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD