Heat Recovery from an Air Compressor

On the whole most of us are quite aware of the considerable savings that can be accomplished by wise use and recovery of energy.   One way that a plant can save substantially is to capture the energy that an electric motor adds to the compressed air from the air compressor.  As much as 80% to 93% of the electrical energy used by an industrial air compressor is converted to heat.  A properly designed heat recovery system can capture anywhere between 50% to 90% of this energy and convert it to useful energy.

The heat recovered is sufficient in most cases to use in supplemental ways such as heating water and space heating, however generally there is not enough energy to produce steam directly.

IngersollRand_R-series-R110
Ingersoll Rand Rotary Screw Compressor

 

Packaged air cooled rotary screw compressor lend themselves easily to heat recovery, supplemental heating or other hot air uses very well due to their enclosed design.  Since ambient air is directed across the compressors aftercooler and lubricant cooler where the heat can be easily collected from both the compressed air and the lubricant.

Packaged coolers are normally enclosed cabinets that feature integral heat exchangers and fans.  This type of system only needs ducting and an additional fan to minimize back pressure on the air compressors cooling fan.  This arrangement can be controlled with a simple thermostat operated vent on a hinge and when the extra heat is not required it can be ducted outside the facility.

The recovered energy can be used for space heating, industrial drying, preheating aspirated air for oil burners or  other applications requiring warm air.  Typically there is approximately 50,000 Btu/Hr of energy available from each 100 SCFM of capacity (at full load).  The temperature differential is somewhere between 30°F – 40°F above the air inlet temperature and the recovery efficiency is commonly found to be 80% – 90%.

We all know the old saying there is “no free lunch” and that principle applies here.  If the supply air is not from outside the plant a drop in the static pressure could occur in the compressor cabinet thereby reducing the efficiency of the compressor.  If you choose to use outside air for makeup, you might need some return air to keep the air above freezing to avoid compressor damage.

Heat recovery is generally not utilized with water cooled compressors since an extra stage of heat exchange is required and the efficiency of recovering that heat is normally in the 50% – 60% range.

To calculate annual energy savings:

Energy Savings (Btu/Yr) = 0.80 * compressor bhp * 2,545 Btu/bhp-hour * hours of operation.

If we consider a 50 HP compressor:

.080 * 50bhp * 2,545 Btu/bhp-hour * 2080 hrs/year =  211,744,000 Btu/yr

Where 0.80 is the recoverable heat as a percentage of the units output, 2,545 is the conversion factor.

Cost savings in dollars per year = [(energy savings in Btu/yr)/Btu/fuel) x ($/unit fuel)]/primary heater efficiency.

If you would like to discuss saving money by reducing compressed air demand and/or any EXAIR product,  I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Photo courtesy of CC BY 3.0, https://en.wikipedia.org/w/index.php?curid=32093890

 

 

Compressor Control – A Way to Match Supply to Demand

Rarely does the compressed air demand match the supply of the compressor system. To keep the generation costs down and the system efficiency as high as possible Compressor Controls are utilized to maximize the system performance, taking into account system dynamics and storage. I will touch on several methods briefly, and leave the reader to delve deeper into any type of interest.

air compressor

  • Start/Stop – Most basic control –  to turn the compressor motor on and off, in response to a pressure signal (for reciprocating and rotary type compressors)
  • Load/Unload – Keeps the motor turning continuously, but unloads the compressor when a pressure level is achieved.  When the pressure drops to a set level, the compressor reloads (for reciprocating, rotary screw, and centrifugal type)
  • Modulating – Restricts the air coming into the compressor, as a way to reduce the compressor output to a specified minimum, at which point the compressor is unloaded (for lubricant-injected rotary screw and centrifugal)
  • Dual/Auto Dual – Dual Control has the ability to select between Start/Stop and Load /Unload control modes.  Automatic Dual Control adds the feature of an over-run timer, so that the motor is stopped after a certain period of time without a demand.
  • Variable Displacement (Slide Valve, Spiral Valve or Turn Valve) – Allows for gradual reduction of the compressor displacement while keeping the inlet pressure constant (for rotary screw)
  • Variable Displacement (Step Control Valves or Poppet Valves) – Similar effect as above, but instead of a gradual reduction, the change is step like (for lubricant injected rotary types)
  • Variable Speed – Use of a variable frequency AC drive or by switched reluctance DC drive to vary the speed of the motor turning the compressor. The speed at which the motor turns effects the output of the system.

In summary – the primary functions of the Compressor Controls are to match supply to demand, save energy, and protect the compressor (from overheating, over-pressure situations, and excessive amperage draw.) Other functions include safety (protecting the plant and personnel), and provide diagnostic information, related to maintenance and operation warnings.

If you would like to talk about compressed air or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

A Brief History of the Air Compressor

Essentially compressed air technology was first used with the knowledge of how to start a fire.  Humans learned that to get the fire started, blowing helped the process, healthy human lungs can generate approximately .02 to .08 bar or .3 to 1.2 PSI.

At the beginning of the metallurgical age (approximately 3000 B.C.) a higher volume of air than what human lungs could produce was required to the reach the temperatures required to melt and form metals such as copper, tin, lead, etc.  This need lead to the hand-operated bellows, the first mechanical air compressor.  Approximately 1500 years later the more efficient foot powered bellows was developed.

33007143764_131090c6bb_o.jpg

The foot powered bellows was followed by water powered bellows and was the mainstay for more than 2000 years.  However as blast furnaces came into being the need for compressed air increased.  This lead John Smeaton in 1762 to design a water wheel that powered a blowing cylinder and this began to replace bellows.  In 1776 John Wilkinson developed an efficient blasting machine and this was the beginning for mechanically powered air compressors.

As time progressed the idea of transmitting energy via compressed air became acceptable.  This idea was demonstrated around 1800 when the newly invented pneumatic rock drill was used to tunnel 80 miles under Mt. Cenis to connect Italy & France by rail.  This was an extraordinary feat for the time and garnered global interest.  This event perpetuated great interest into pneumatic powered devices  and brought us the air powered motors, clocks and even beer dispensers!

While compressed air is capable of transmitting energy long distances and performing tremendous work it also referred to as the 4th utility in industrial plants due to its cost.  We at EXAIR have been promoting compressed air conservation and safety using highly engineered products for 35 years!  Our products wring the maximum of energy out of every SCFM fed to them by using air entrainment and the Coanda effect.  Not only are we conserving your compressed air we offer products that are quiet and can’t be dead ended which prevents air embolisms.

If you are interested in discussing conserving compressed air and/or compressed air safety, I would enjoy hearing from you.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

A Review of Centrifugal Air Compressors

Over the last few months, my EXAIR colleagues and I have blogged about several different types of air compressor types including single and double acting reciprocating, rotary screw, sliding vane and rotary-scroll air compressors. You can click on the links above to check those out. Today, we will examine centrifugal air compressors.

The types of compressors that we have looked at to date have been of the Positive Displacement type.  For this type, an amount of air is drawn in and trapped in the compression area, and the volume in which it is held is mechanically reduced, resulting is rise in pressure as it approaches the discharge point.

types of compressors

The centrifugal air compressors fall under the Dynamic type. A dynamic compressor operates through the principle that a continuous flow of air has its velocity raised in an impeller rotating at a relatively high speed (can exceed 50,000 rpm.) The air has an increase in its kinetic energy (due to the rise in velocity) and then the kinetic energy is transformed to pressure energy in a diffuser and/or a volute chamber. The volute is a curved funnel that increases in area as it approaches the discharge port. The volute converts the kinetic energy into pressure by reducing speed while increasing pressure. About one half of the energy is developed in the impeller and the other half in the diffuser and volute.

Centrifugal Compressor
Centrifugal Compressor Components

The most common centrifugal air compressor has two to four stages to generate pressures of 100 to 150 PSIG.  A water cooled inter-cooler and separator between each stage removes condensation and cools the air prior to entering the next stage.

Some advantages of the Centrifugal Air Compressor-

  • Comes completely packaged fort plant air up to 1500 hp
  • As size increases, relative initial costs decrease
  • Provides lubricant-free air
  • No special foundation required

A few disadvantages-

  • Higher initial investment costs
  • Has specialized maintenance requirements
  • Requires unloading for operation at reduced operational capacities

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about air compressors or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

 

Rotary Scroll-Type Compressor

Over the last few months, my EXAIR colleagues and I have blogged about several different types of air compressor types including single and double acting reciprocating, rotary screw and sliding vane air compressors. You can click on the links above to check those out. Today, I will review the basics of the rotary scroll-type compressor.

The rotary scroll type compressor falls under the positive displacement-type, the same as the other types previously discussed.  A positive displacement type operates under the premise that a given quantity of air is taken in, trapped in a compression chamber and the physical space of the chamber is mechanically reduced.  When a given amount of air occupies a smaller volume, the pressure of the air increases.

Each of the previous positive displacement type compressors use a different mechanism for the reduction in size of the compression chamber. The rotary scroll uses two inter-meshing scrolls, that are spiral in shape. One of the scrolls is fixed, and does not move (in red).  The other scroll (in black) has an “orbit” type of motion, relative to the fixed scroll. In the below simulation, air would be drawn in from the left, and as it flows clockwise through the scroll, the area is reduced until the air is discharged at a high pressure at the center.

Two_moving_spirals_scroll_pump
How it Works- A fixed scroll (red), and an ‘orbiting’ scroll (black) work to compress the air

It is of note that the flow from start to finish is continuous, providing air delivery that is steady in pressure and flow, with little or no pulsation.

There is no metal to metal sliding contact, so lubrication is not needed.  A drawback to an oil free operation is that oil lubrication tends to reduce the heat of compression and without it, the efficiency of scroll compressors is less than that of lubricated types.

The advantages of the rotary scroll type compressor include:

  • Comes as a complete package
  • Comparatively efficient operation
  • Can be lubricant-free
  • Quiet operation
  • Air cooled

The main disadvantage:

  • A limited range of capacities is available, with low output flows

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about compressed air or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Rotary Scroll GIF:  used from of Public Domain

Designing a Compressed Air Distribution System

Compressed air is used to operate pneumatic systems in a facility, and it can be segregated into three sections; the supply side, the demand side, and the distribution system.  The supply side is the air compressor, after-cooler, dryer, and receiver tank that produce and treat the compressed air.  They are generally located in a compressor room somewhere in the corner of the plant.  The demand side are the collection of end-use devices that will use the compressed air to do “work”.  These pneumatic components are generally scattered throughout the facility.  To connect the supply side to the demand side, a compressed air distribution system is required.  Distribution systems are pipes which carry the compressed air from the compressor to the pneumatic devices.  For a sound compressed air system, the three sections have to work together to make an effective and efficient system.

An analogy, I like to compare to the compressed air system, is an electrical system.  The air compressor will be considered the voltage source, and the pneumatic devices will be marked as light bulbs.  To connect the light bulbs to the voltage source, electrical wires are needed.  The distribution system will represent the electrical wires.  If the wire gauge is too small to supply the light bulbs, the wire will heat up and the voltage will drop.  This heat is given off as wasted energy, and the light bulbs will dim.

The same thing happens within a compressed air system.  If the piping size is too small, a pressure drop will occur.  This is also wasted energy.   In both types of systems, wasted energy is wasted money.  One of the largest systematic problems with compressed air systems is pressure drop.  If too large of a pressure loss occurs, the pneumatic equipment will not have enough power to operate effectively.  As shown in the illustration below, you can see how the pressure decreases from the supply side to the demand side.  With a properly designed distribution system, energy can be saved, and in reference to my analogy, it will keep the lights on.

Source: Compressed Air Challenge Organization

To optimize the compressed air system, we need to reduce the amount of wasted energy; pressure drop.   Pressure drop is based on restrictions, obstructions, and piping surface.  If we evaluate each one, a properly designed distribution system can limit the unnecessary problems that can rob the “power” from your pneumatic equipment.

  1. Restriction: This is the most common type of pressure drop. The air flow is forced into small areas, causing high velocities.  The high velocity creates turbulent flow which increases the losses in air pressure.  Flow within the pipe is directly related to the velocity times the square of the diameter.  So, if you cut the I.D. of the pipe by one-half, the flow rating will be reduced to 25% of the original rating; or the velocity will increase by four times.  Restriction can come in different forms like small diameter pipes or tubing; restrictive fittings like quick disconnects and needle valves, and undersized filters and regulators.
  2. Obstruction: This is generally caused by the type of fittings that are used.  To help reduce additional pressure drops use sweeping elbows and 45-degree fittings instead of 90 deg. elbows.  Another option is to use full flow ball valves and butterfly valves instead of seated valves and needle valves.  If a blocking valve or cap is used for future expansion, try and extend the pipe an additional 10 times the diameter of the pipe to help remove any turbulence caused from air flow disruptions.  Removing sharp turns and abrupt stops will keep the velocity in a more laminar state.
  3. Roughness: With long runs of pipe, the piping surface can affect the compressed air stream. As an example, carbon steel piping has a relative rough texture.  But, over time, the surface will start to rust creating even a rougher surface.  This roughness will restrain the flow, creating the pressure to drop.  Aluminum and stainless steel tubing have much smoother surfaces and are not as susceptible to pressure drops caused by roughness or corrosion.

As a rule, air velocities will determine the correct pipe size.  It is beneficial to oversize the pipe to accommodate for any expansions in the future.  For header pipes, the velocities should not be more than 20 feet/min (6 meter/min).  For the distribution lines, the velocities should not exceed 30 feet/min (9 meter/min).  In following these simple rules, the distribution system can effectively supply the necessary compressed air from the supply side to the demand side.

To have a properly designed distribution system, the pressure drop should be less than 10% from the reservoir tank to the point-of-use.  By following the tips above, you can reach that goal and have the supply side, demand side, and distribution system working at peak efficiency.  If you would like to reduce waste even more, EXAIR offers a variety of efficient, safe, and effective compressed air products to fit within the demand side.  This would be the pneumatic equivalent of changing those light bulbs at the point-of-use into LEDs.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photo: Light Bulb by qimonoCreative Commons CC0

 

About Sliding Vane Air Compressors

Over the last few months, my EXAIR colleagues have blogged about several different types of air compressor types including single and double acting reciprocating and rotary screw. (You can select the links above to check those out.) Today I will review the basics of the sliding vane type, specifically the oil/lubricant injected sliding vane compressor.

The lubricant injected sliding vane compressor falls under the positive displacement-type, the same as the other types previously discussed.  A positive displacement type operates under the premise that a given quantity of air is taken in, trapped in a compression chamber and the physical space of the chamber is mechanically reduced.  When a given amount of air occupies a smaller volume, the pressure of the air increases.

Each of the previous positive displacement type compressors use a different mechanism for the reduction in size of the compression chamber.  The single and double acting reciprocating use a piston that cycles up and down to reduce the compression chamber size. The rotary screw uses two inter-meshing rotors, where the compression chamber volume reduces as the air approaches the discharge end.  For the lubricant sliding vane type, the basic design is shown below.

Sliding Vane2
Air enters from the right, and as the compression chamber volume reduces due to counterclockwise rotation, the pressure increases until the air discharges to the left

The compressor consist of an external housing or stator, and the internal circular rotor, which is eccentrically offset.  The rotor has radially positioned (and occasionally offset) slots in which vanes reside.  As the rotor rotates, the centrifugal forces on the vanes cause them to move outwards and contact the inner surface of the stator bore.  This creates the compression areas, formed by the vanes, rotor surface and the stator bore.  Because the rotor is eccentrically offset, the volume of the compression area reduces as the distance between the rotor surface and the stator reduces.  As the rotor turns counterclockwise, the vanes are pushed back into the rotor slots, all the while in contact with the stator surface.  The shrinking of the compression area leads to the increase in air pressure.

Oil is injected into compression chamber to act as a lubricant, to assist is sealing, and to help to remove some of the heat of compression.

The advantages of the lubricant sliding vane compressor type is very similar to the lubricant injected rotary screw.  A few key advantages include:

  • Compact size
  • Relatively low initial cost
  • Vibration free operation- no special foundation needed
  • Routine maintenance includes basic lubricant and filter changes

A few of the disadvantages include:

  • Lubricant gets into the compressed air stream, requires an air/lubricant separation system
  • Requires periodic lubricant change and disposal
  • Less efficient than rotary screw type
  • Not as flexible as rotary screw in terms of capacity control in meeting changing demands

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about compressed air or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

Diagram:  used from Compressed Air Challenge Handbook