Designing a Compressed Air Distribution System

Compressed air is used to operate pneumatic systems in a facility, and it can be segregated into three sections; the supply side, the demand side, and the distribution system.  The supply side is the air compressor, after-cooler, dryer, and receiver tank that produce and treat the compressed air.  They are generally located in a compressor room somewhere in the corner of the plant.  The demand side are the collection of end-use devices that will use the compressed air to do “work”.  These pneumatic components are generally scattered throughout the facility.  To connect the supply side to the demand side, a compressed air distribution system is required.  Distribution systems are pipes which carry the compressed air from the compressor to the pneumatic devices.  For a sound compressed air system, the three sections have to work together to make an effective and efficient system.

An analogy, I like to compare to the compressed air system, is an electrical system.  The air compressor will be considered the voltage source, and the pneumatic devices will be marked as light bulbs.  To connect the light bulbs to the voltage source, electrical wires are needed.  The distribution system will represent the electrical wires.  If the wire gauge is too small to supply the light bulbs, the wire will heat up and the voltage will drop.  This heat is given off as wasted energy, and the light bulbs will dim.

The same thing happens within a compressed air system.  If the piping size is too small, a pressure drop will occur.  This is also wasted energy.   In both types of systems, wasted energy is wasted money.  One of the largest systematic problems with compressed air systems is pressure drop.  If too large of a pressure loss occurs, the pneumatic equipment will not have enough power to operate effectively.  As shown in the illustration below, you can see how the pressure decreases from the supply side to the demand side.  With a properly designed distribution system, energy can be saved, and in reference to my analogy, it will keep the lights on.

Source: Compressed Air Challenge Organization

To optimize the compressed air system, we need to reduce the amount of wasted energy; pressure drop.   Pressure drop is based on restrictions, obstructions, and piping surface.  If we evaluate each one, a properly designed distribution system can limit the unnecessary problems that can rob the “power” from your pneumatic equipment.

  1. Restriction: This is the most common type of pressure drop. The air flow is forced into small areas, causing high velocities.  The high velocity creates turbulent flow which increases the losses in air pressure.  Flow within the pipe is directly related to the velocity times the square of the diameter.  So, if you cut the I.D. of the pipe by one-half, the flow rating will be reduced to 25% of the original rating; or the velocity will increase by four times.  Restriction can come in different forms like small diameter pipes or tubing; restrictive fittings like quick disconnects and needle valves, and undersized filters and regulators.
  2. Obstruction: This is generally caused by the type of fittings that are used.  To help reduce additional pressure drops use sweeping elbows and 45-degree fittings instead of 90 deg. elbows.  Another option is to use full flow ball valves and butterfly valves instead of seated valves and needle valves.  If a blocking valve or cap is used for future expansion, try and extend the pipe an additional 10 times the diameter of the pipe to help remove any turbulence caused from air flow disruptions.  Removing sharp turns and abrupt stops will keep the velocity in a more laminar state.
  3. Roughness: With long runs of pipe, the piping surface can affect the compressed air stream. As an example, carbon steel piping has a relative rough texture.  But, over time, the surface will start to rust creating even a rougher surface.  This roughness will restrain the flow, creating the pressure to drop.  Aluminum and stainless steel tubing have much smoother surfaces and are not as susceptible to pressure drops caused by roughness or corrosion.

As a rule, air velocities will determine the correct pipe size.  It is beneficial to oversize the pipe to accommodate for any expansions in the future.  For header pipes, the velocities should not be more than 20 feet/min (6 meter/min).  For the distribution lines, the velocities should not exceed 30 feet/min (9 meter/min).  In following these simple rules, the distribution system can effectively supply the necessary compressed air from the supply side to the demand side.

To have a properly designed distribution system, the pressure drop should be less than 10% from the reservoir tank to the point-of-use.  By following the tips above, you can reach that goal and have the supply side, demand side, and distribution system working at peak efficiency.  If you would like to reduce waste even more, EXAIR offers a variety of efficient, safe, and effective compressed air products to fit within the demand side.  This would be the pneumatic equivalent of changing those light bulbs at the point-of-use into LEDs.

John Ball
Application Engineer
Twitter: @EXAIR_jb


Photo: Light Bulb by qimonoCreative Commons CC0


About Sliding Vane Air Compressors

Over the last few months, my EXAIR colleagues have blogged about several different types of air compressor types including single and double acting reciprocating and rotary screw. (You can select the links above to check those out.) Today I will review the basics of the sliding vane type, specifically the oil/lubricant injected sliding vane compressor.

The lubricant injected sliding vane compressor falls under the positive displacement-type, the same as the other types previously discussed.  A positive displacement type operates under the premise that a given quantity of air is taken in, trapped in a compression chamber and the physical space of the chamber is mechanically reduced.  When a given amount of air occupies a smaller volume, the pressure of the air increases.

Each of the previous positive displacement type compressors use a different mechanism for the reduction in size of the compression chamber.  The single and double acting reciprocating use a piston that cycles up and down to reduce the compression chamber size. The rotary screw uses two inter-meshing rotors, where the compression chamber volume reduces as the air approaches the discharge end.  For the lubricant sliding vane type, the basic design is shown below.

Sliding Vane2
Air enters from the right, and as the compression chamber volume reduces due to counterclockwise rotation, the pressure increases until the air discharges to the left

The compressor consist of an external housing or stator, and the internal circular rotor, which is eccentrically offset.  The rotor has radially positioned (and occasionally offset) slots in which vanes reside.  As the rotor rotates, the centrifugal forces on the vanes cause them to move outwards and contact the inner surface of the stator bore.  This creates the compression areas, formed by the vanes, rotor surface and the stator bore.  Because the rotor is eccentrically offset, the volume of the compression area reduces as the distance between the rotor surface and the stator reduces.  As the rotor turns counterclockwise, the vanes are pushed back into the rotor slots, all the while in contact with the stator surface.  The shrinking of the compression area leads to the increase in air pressure.

Oil is injected into compression chamber to act as a lubricant, to assist is sealing, and to help to remove some of the heat of compression.

The advantages of the lubricant sliding vane compressor type is very similar to the lubricant injected rotary screw.  A few key advantages include:

  • Compact size
  • Relatively low initial cost
  • Vibration free operation- no special foundation needed
  • Routine maintenance includes basic lubricant and filter changes

A few of the disadvantages include:

  • Lubricant gets into the compressed air stream, requires an air/lubricant separation system
  • Requires periodic lubricant change and disposal
  • Less efficient than rotary screw type
  • Not as flexible as rotary screw in terms of capacity control in meeting changing demands

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about compressed air or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB


Diagram:  used from Compressed Air Challenge Handbook

Intelligent Compressed Air: What is an Air Compressor?

Example of the supply side of a compressed air system

One thing that is found in virtually every industrial environment is an air compressor. Some uses for the compressed air generated are: powering pneumatic tools, packaging, automation equipment, conveyors, controls systems, and various others. Pneumatic tools are favored because they tend to be smaller and more lightweight than electric tools, offer infinitely variable speed and torque, and can be safer than the hazards associated with electrical devices. In order to power these devices, compressed air must be generated.

types of compressors

There are two main categories of air compressors: positive-displacement and dynamic. In a positive-displacement type, a given quantity of air is trapped in a compression chamber. The volume of which it occupies is mechanically reduced (squished), causing a corresponding rise in pressure. In a dynamic compressor, velocity energy is imparted to continuously flowing air by a means of impellers rotating at a very high speed. The velocity energy is then converted into pressure energy.

Of the positive-displacement variety they are broken down further into two more categories: reciprocating and rotary. A reciprocating compressor works like a bicycle pump. A piston reduces the volume occupied by the air or gas, compressing it into a higher pressure. There are two types of reciprocating compressors, single or double-acting. Single-acting compressors are the most common and are available up to 30HP at 200 psig. Their small size and weight allow them to be installed near the point of use and avoid lengthy piping runs. These are the types of compressors that would be commonly found in your garage. The double-acting reciprocating compressor is much like its single-acting brethren, only it uses both sides of the piston and cylinder for air compression. This doubles the capacity of the compressor for a given cylinder size. They are much more efficient than single-acting compressors, but are more expensive and do require a more specialized installation and maintenance.

Rotary compressors are available in lubricant-injected or lubicrant-free varieties. These types of compressors use two inter-meshing rotors that have an inlet port at one end and a discharge port at the other. Air flows through the inlet port and is trapped between the lobes and the stator. As the rotation continues, the point intermeshing begins to move along the length of the rotors. This reduces the space that is occupied by the air, resulting in an increase in pressure. In the lubricant-injected compressors, the compression chamber is lubricated between the intermeshing rotors and bearings. This takes away the heat of compression and also acts as a seal. In the lubricant-free varieties, the intermeshing rotors have very tight tolerances and are not allowed to touch. Since there is no fluid to remove the heat of compression, they typically have two stages of compression with an intercooler between and an after cooler after the second stage. Lubricant-free compressors are beneficial as they supply clean, oil-free compressed air. They are, however, more expensive and less efficient to operate than the lubricant-injected variety.

On the other side of the coin, we have the dynamic compressors. These are comprised of two main categories: axial and centrifugal. These types of compressors raise the pressure of air or gas by imparting velocity energy and converting it to pressure energy. In a centrifugal air compressor, air continuously flows and is accelerated by an impeller. This impeller can rotate at speeds that exceed 50,000 rpm. Centrifugal air compressors are generally much larger and can accommodate flow ranges of 500-100,000 CFM. They also provide lubricant-free air.

Axial compressors are used for situations that require lower pressure but high flow rates. They do not change the direction of the gas, it enters and exits the compressor in an axial direction. It is accelerated and then diffused which creates the increase in pressure. A common application that would be served by this type of compressor is to compress the air intake of gas turbines. They have a relatively high peak efficiency, however their large overall size and weight as well as the high starting power requirements pose some disadvantages.

Just as you can find a wide variety of makes and models of automobiles, the same can be said for air compressors. The size, type, and features will be dictated by the types of applications that you’ll be needing the compressed air for in your facility. A quick chat with your local air compressor supplier will help you to determine which type is most suitable for you.

Of course, any of these types of compressors can be used to supply air to your engineered Intelligent Compressed Air Products. If you have an application in your facility that could benefit from an engineered solution, give us a call. An Application Engineer would be happy to discuss your options with you and see to it that you’re getting the most out of your compressed air!

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD


Images Courtesy of  the Compressed Air Challenge and thomasjackson1345 Creative Commons.

About Rotary Screw Air Compressors

Recently, EXAIR Application Engineers have written blogs about reciprocating type air compressors: Single Acting (by Lee Evans) and Dual Acting (by John Ball.) Today, I would like to introduce you, dear EXAIR blog reader, to another type: the Rotary Screw Air Compressor.

Like a reciprocating compressor, a rotary screw design uses a motor to turn a drive shaft. Where the reciprocating models use cams to move pistons back & forth to draw in air, compress it, and push it out under pressure, a rotary screw compressor’s drive shaft turns a screw (that looks an awful lot like a great big drill bit) whose threads are intermeshed with another counter-rotating screw. It draws air in at one end of the screw, and as it is forced through the decreasing spaces formed by the meshing threads, it’s compressed until it exits into the compressed air system.

Rotary Screw Air Compressor…how it works.

So…what are the pros & cons of rotary screw compressors?


*Efficiency.  With no “down-stroke,” all the energy of the shaft rotation is used to compress air.

*Quiet operation.  Obviously, a simple shaft rotating makes a lot less noise than pistons going up & down inside cylinders.

*Higher volume, lower energy cost.  Again, with no “down-stroke,” the moving parts are always compressing air instead of spending half their time returning to the position where they’re ready to compress more air

*Suitable for continuous operation.  The process of compression is one smooth, continuous motion.

*Availability of most efficient control of output via a variable frequency drive motor.

*They operate on the exact same principle as a supercharger on a high performance sports car (not a “pro” strictly speaking from an operation sense, but pretty cool nonetheless.)


*Purchase cost.  They tend to run a little more expensive than a similarly rated reciprocating compressor.  Or more than a little, depending on options that can lower operating costs.  Actually, this is only a “con” if you ignore the fact that, if you shop right, you do indeed get what you pay for.

*Not ideal for intermittent loads.  Stopping & starting a rotary screw compressor might be about the worst thing you can do to it.  Except for slacking on maintenance.  And speaking of which:

*Degree of maintenance.  Most maintenance on a reciprocating compressor is fairly straightforward (think “put the new part in the same way the old one came out.”)  Working on a rotary screw compressor often involves reassembly & alignment of internal parts to precision tolerances…something better suited to the professionals, and they don’t work cheap.

Like anything else, there are important factors to take under consideration when deciding which type of air compressor is most suitable for your needs.  At EXAIR, we always recommend consulting a reputable air compressor dealer in your area, helping them fully understand your needs, and selecting the one that fits your operation and budget.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Air: What is it?

Air Balloons

What is Air? Air is an invisible gas that supports life on earth. Dry air is made from a mixture of 78% Nitrogen, 21% Oxygen, and 1% of remaining gases like carbon dioxide and other inert gases.  Ambient air contains an average of 1% water vapor, and it has a density of 0.0749 Lbs./cubic foot (1.22 Kg/cubic meter) at standard conditions.  Air that surrounds us does not have a smell, color, or taste, but it is considered a fluid as it follows the rules of fluid dynamics. But unlike liquids, gases like air are compressible.  Once we discovered the potential of compressing the surrounding air, we were able to advance many technologies.


Guess when the earliest air compressor was used?  Believe it or not, it was when we started to breathe air.  Our diaphragms are like compressors.  It pulls and pushes the air in and out of our lungs.  We can generate up to 1.2 PSI (80 mbar) of air pressure.  During the iron age, hotter fires were required for smelting.  Around 1500 B.C., a new type of air compressor was created, called a bellows.  You probably seen them hanging by the fireplaces.  It is a hand-held device with a flexible bag that you squeeze together to compress the air.  The high stream of air was able to get higher temperature fires to melt metals.

Then we started to move into the industrial era.  Air compressors were used in mining industries to move air into deep caverns and shafts.  Then as the manufacturing technologies advanced, the requirements for higher air pressures were needed.  The stored energy created by compressing the air allowed us to develop better pneumatic systems for manufacturing, automation, and construction.  I do not know what the future holds in compressed air systems, but I am excited to find out.

Since air is a gas, it will follow the basic rules of the ideal gas law;

PV = nRT  (Equation 1)

P – Pressure

V – Volume

n – Amount of gas in moles

R – Universal Gas Constant

T – Temperature

If we express the equation in an isothermal process (same temperature), we can see how the volume and pressure are related.  The equation for two different states of a gas can be written as follows:

P1 * V1 = P2 * V2  (Equation 2)

P1 – Pressure at initial state 1

V1 – Volume at initial state 1

P2 – Pressure at changed state 2

V2 – Volume at changed state 2

If we solve for P2, we have:

P2 = (P1 * V1)/V2  (Equation 3)

In looking at Equation 3, if the volume, V2, gets smaller, the pressure, P2, gets higher.  This is the idea behind how air compressors work.  They decrease the volume inside a chamber to increase the pressure of the air.  Most industrial compressors will compress the air to about 125 PSI (8.5 bar).  A PSI is a pound of force over a square inch.  For metric pressure, a bar is a kg of force over a square centimeter.  So, at 125 PSI, there will be 125 pounds of force over a 1” X 1” square.  This amount of potential energy is very useful to do work for pneumatic equipment.  To simplify the system, the air gets compressed, stored as energy, released as work and is ready to be used again in the cycle.

Air Compressor

Compressed air is a clean utility that is used in many different applications.  It is much safer than electrical or hydraulic systems.  Since air is all around us, it is an abundant commodity for air compressors to use.  But because of the compressibility factor of air, much energy is required to create enough pressure in a typical system.  It takes roughly 1 horsepower (746 watts) of power to compress 4 cubic feet of air (113L) to 125 PSI (8.5 bar) every minute.  With almost every manufacturing plant in the world utilizing compressed air in one form or another, the amount of energy used to compress air is extraordinary.  So, utilizing compressed air as efficiently as possible is mandatory.  Air is free, but making compressed air is expensive

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Products, you can contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Twitter: @EXAIR_jb


Picture: Hot Air Rises by Paul VanDerWerf. Creative Commons Attribution 2.0 Generic.

Picture: Bellows by Joanna Bourne. Creative Commons Attribution 2.0 Generic.

Picture: Air Compressor by Chris Bartle. Creative Commons Attribution 2.0 Generic.

Intelligent Compressed Air: Membrane Dryers – What are they and How Do they Work?

Recently we have blogged about Compressed Air Dryers and the different types of systems.  We have reviewed the Desiccant and Refrigerant types of dryers, and today I will discuss the basics of  the Membrane type of dryers.

All atmospheric air that a compressed air system takes in contains water vapor, which is naturally present in the air.  At 75°F and 75% relative humidity, 20 gallons of water will enter a typical 25 hp compressor in a 24 hour period of operation.  When the the air is compressed, the water becomes concentrated and because the air is heated due to the compression, the water remains in vapor form.  Warmer air is able to hold more water vapor, and generally an increase in temperature of 20°F results in a doubling of amount of moisture the air can hold. The problem is that further downstream in the system, the air cools, and the vapor begins to condense into water droplets. To avoid this issue, a dryer is used.

Membrane Dryers are the newest type of compressed air dryer. Membranes are commonly used to separate gases, such as removing nitrogen from air. The membrane consists of a group of hollow fiber tubes.  The tubes are designed so that water vapor will permeate and pass through the membrane walls faster than the air.  The dry air continues on through the tubes and discharges into the downstream air system. A small amount of ‘sweep’ air is taken from the dry air to purge and remove the water vapor from inside the dryer that has passed through the membrane tubes.

Membrane Dryer
Typical Membrane Dryer Arrangement

Resultant dew points of 40°F are typical, and dew points down to -40°F are possible but require the use of more purge air, resulting in less final dry compressed air discharging to the system.

The typical advantages of Membrane Dryers are-

  1.  Low installation and operating costs
  2.  Can be installed outdoors
  3.  Can be used in hazardous locations
  4.  No moving parts

There are a few disadvantages to consider-

  1. Limited to low capacity systems
  2. High purge air losses (as high as 15-20% to achieve lowest pressure dew points
  3. Membrane can be fouled by lubricants and other contaminants, a coalescing type filter is required before the membrane dryer.

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB


Membrane Dryer Schematic – From Compressed Air Challenge, Best Practices for Compressed Air Systems, Second Edition




About Double Acting Reciprocating Air Compressors

My colleague, Lee Evans, wrote a blog “About Single Acting Reciprocating Compressors”, and I wanted to extend that conversation to a more efficient relative, the double acting reciprocating compressor.   As you see in the chart below, this type of compressor falls within the same family under the category of positive displacement compressors.

Compressor Types

Positive displacement compressors increase air pressure by reducing air volume within a confined space.  The reciprocating type of air compressor uses a motor that turns a crank which pushes a piston inside a cylinder; like the engine in your car.  In a basic cycle, an intake valve opens to allow the ambient air into the cylinder, the gas gets trapped, and once it is compressed by the piston, the exhaust valve opens to discharge the compressed volume into a tank.  This method of compression happens for both the single and double acting reciprocating compressors.  With a single acting compressor, the air is compressed only on the up-stroke of the piston inside the cylinder.  The double acting compressor compresses the air on both the up-stroke and the down-stroke of the piston, doubling the capacity of a given cylinder size.  This “double” compression cycle is what makes this type of air compressor very efficient.  A single acting compressor will have an operating efficiency between 22 – 24 kW/100 cfm of air while the double acting compressor has an operating efficiency between 15 – 16 kW/100 cfm.  Therefore, electricity cost is less with a double-acting reciprocating air compressor to make the same amount of compressed air.

To explore the internals a bit closer, the mechanical linkage used to move the piston is slightly different as well as the additional intake and exhaust valves.   Instead of the connecting rod being attached directly to the piston as seen inside a single acting compressor, a crosshead is added between the compression piston and the connecting rod (view picture below).  The rod that connects the crosshead to the compression piston can be sealed to keep the cylinder completely encapsulated.  For every rotation of the electric motor, the air is being compressed twice.  With the added heat of compression, the double acting compressors are generally water-cooled.  Also, with the added mechanism between the crank and the piston, the rotational speeds are typically less.  Because of the larger size, water jackets, and added parts, the initial cost is more expensive than the single acting compressor, but the efficiency is much higher.

Double Acting Reciprocating Air Compressor

Double acting compressors are generally designed for rugged 100% continuous operations.  Dubbed the work horse of the compressor family, they are also known for their long service life.  They are commonly used in high pressure services in multistage styles and can come in lubricated and non-lubricated configurations.   With the dual compression, slow speed and inter-cooling, it makes this type of air compressor very proficient in making compressed air.

John Ball
Application Engineer
Twitter: @EXAIR_jb


Photos:  used from Compressed Air Challenge Handbook