A Brief History of Compressed Air

So where exactly did compressed air come from? How did it become so widely used and where will it go? Both of these are great questions and the answers lie below.

Compressed air can be traced all the way back to the classic bellows that were used to fuel blacksmith fires and forges.  These started as hand pumped bellows, they then scaled up to foot pumped, multiple person pumped, oxen or horse driven and then eventually waterwheel driven.  All of these methods came about due to the demand for more and more compressed air. These bellows did not generate near the amount of air pressure or volume needed for modern day practices yet they worked in the times.  These early bellows pumps would even supply miners with air.

With the evolution of metallurgy and industry these bellows were replaced by wheel driven fans, then steam came about and began generating more industrial sources of power.  The main issue with steam was that it would lose its power over longer runs of pipe due to condensing in the pipes.  Thus the birth of the air compressor was born. One of the largest projects that is noted to first use compressed air was in 1861 during the build of the Mont Cenis Tunnel in Switzerland in which they used compressed air machinery.  From here the constant need and evolution for on-demand compressed air expanded.  The picture below showcases two air compressors from 1896.

compressed_air_28189629_281459402261829
Air Compressors from the old days.

The compressors evolved over time from single stage, to two-stage reciprocating, on to compound, rotary-screw compressors, rotary vane, scroll, turbo, and centrifugal compressors with variable frequency drives.  The efficiency of each evolution has continued to increase.  More output for the same amount of input.  Now we see a two-stage compressor, considered old technology, and wonder how the company can get any work done.

All of the technological advances in compressor technology were driven by the demand sides of the compressed air systems.  Companies needed to power more, go further, get more from less, ultimately increase production.  With this constant increase in demand, the supply of compressed air increased and more efficient products for using compressed air began to evolve so the air was used more efficiently.

Enter EXAIR, we evolved the blowoff to meet the increasing demands of industrial companies to get the same amount of work done with less compressed air. We have continually evolved our product offering since 1983.  It all started with just a few typed pages of part numbers and has evolved to a 208 page catalog offering of Intelligent Compressed Air Products® for industry.  We will also continue to evolve our product designs for continued improvement of compressed air usage.  This is all to better help companies retain their resources.

cat32_500p
EXAIR Catalog 32

If your company uses compressed air and you aren’t sure if it is efficiently being utilized, contact an Application Engineer.  Thanks for joining us for the brief history lesson, we look forward to hearing from you and seeing what the future brings.

Brian Farno
Application Engineer
@EXAIR_BF BrianFarno@EXAIR.com

 

Compressed air (1896) (14594022618).jpg – Wikimedia Commons – Internet Archive Book Images – Link

 

Supply Side Review: Heat of Compression-Type Dryers

The supply side of a compressed air system has many critical parts that factor in to how well the system operates and how easily it can be maintained.   Dryers for the compressed air play a key role within the supply side are available in many form factors and fitments.  Today we will discuss heat of compression-type dryers.

Heat of compression-type dryer- Twin Tower Version

Heat of compression-type dryers are a regenerative desiccant dryer that take the heat from the act of compression to regenerate the desiccant.  By using this cycle they are grouped as a heat reactivated dryer rather than membrane technology, deliquescent type, or refrigerant type dryers.   They are also manufactured into two separate types.

The single vessel-type heat of compression-type dryer offers a no cycling action in order to provide continuous drying of throughput air.  The drying process is performed within a single pressure vessel with a rotating desiccant drum.  The vessel is divided into two air streams, one is a portion of air taken straight off the hot air exhaust from the air compressor which is used to provide the heat to dry the desiccant. The second air stream is the remainder of the air compressor output after it has been processed through the after-cooler. This same air stream passes through the drying section within the rotating desiccant drum where the air is then dried.  The hot air stream that was used for regeneration passes through a cooler just before it gets reintroduced to the main air stream all before entering the desiccant bed.  The air exits from the desiccant bed and is passed on to the next point in the supply side before distribution to the demand side of the system.

The  twin tower heat of compression-type dryer operates on the same theory and has a slightly different process.  This system divides the air process into two separate towers.  There is a saturated tower (vessel) that holds all of the desiccant.  This desiccant is regenerated by all of the hot air leaving the compressor discharge.  The total flow of compressed air then flows through an after-cooler before entering the second tower (vessel) which dries the air and then passes the air flow to the next stage within the supply side to then be distributed to the demand side of the system.

The heat of compression-type dryers do require a large amount of heat and escalated temperatures in order to successfully perform the regeneration of the desiccant.  Due to this they are mainly observed being used on systems which are based on a lubricant-free rotary screw compressor or a centrifugal compressor.

No matter the type of dryer your system has in place, EXAIR still recommends to place a redundant point of use filter on the demand side of the system.  This helps to reduce contamination from piping, collection during dryer down time, and acts as a fail safe to protect your process.  If you would like to discuss supply side or demand side factors of your compressed air system please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Heat of compression image: Compressed Air Challenge: Drive down your energy costs with heat of compression recovery: https://www.plantservices.com/articles/2013/03-heat-of-compression-recovery/

 

A Review of Centrifugal Air Compressors

Over the last few months, my EXAIR colleagues and I have blogged about several different types of air compressor types including single and double acting reciprocating, rotary screw, sliding vane and rotary-scroll air compressors. You can click on the links above to check those out. Today, we will examine centrifugal air compressors.

The types of compressors that we have looked at to date have been of the Positive Displacement type.  For this type, an amount of air is drawn in and trapped in the compression area, and the volume in which it is held is mechanically reduced, resulting is rise in pressure as it approaches the discharge point.

types of compressors

The centrifugal air compressors fall under the Dynamic type. A dynamic compressor operates through the principle that a continuous flow of air has its velocity raised in an impeller rotating at a relatively high speed (can exceed 50,000 rpm.) The air has an increase in its kinetic energy (due to the rise in velocity) and then the kinetic energy is transformed to pressure energy in a diffuser and/or a volute chamber. The volute is a curved funnel that increases in area as it approaches the discharge port. The volute converts the kinetic energy into pressure by reducing speed while increasing pressure. About one half of the energy is developed in the impeller and the other half in the diffuser and volute.

Centrifugal Compressor
Centrifugal Compressor Components

The most common centrifugal air compressor has two to four stages to generate pressures of 100 to 150 PSIG.  A water cooled inter-cooler and separator between each stage removes condensation and cools the air prior to entering the next stage.

Some advantages of the Centrifugal Air Compressor-

  • Comes completely packaged fort plant air up to 1500 hp
  • As size increases, relative initial costs decrease
  • Provides lubricant-free air
  • No special foundation required

A few disadvantages-

  • Higher initial investment costs
  • Has specialized maintenance requirements
  • Requires unloading for operation at reduced operational capacities

EXAIR recommends consulting with a reputable air compressor dealer in your area, to fully review all of the parameters associated with the selection and installation of a compressed air system.

If you would like to talk about air compressors or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB