Critical Components of Your Compressed Air System

In any manufacturing environment, compressed air is critical to the operation of many processes. You will often hear compressed air referred to as a “4th utility” in a manufacturing environment. The makeup of a compressed air system is usually divided into two primary parts: the supply side and the demand side. The supply side consists of components before and including the pressure/flow controller. The demand side then consists of all the components after the pressure/flow controller.

The first primary component in the system is the air compressor itself. There are two main categories of air compressors: positive-displacement and dynamic. In a positive-displacement type, a given quantity of air is trapped in a compression chamber. The volume of which it occupies is mechanically reduced (squished), causing a corresponding rise in pressure. In a dynamic compressor, velocity energy is imparted to continuously flowing air by a means of impellers rotating at a very high speed. The velocity energy is then converted into pressure energy.

Still on the supply side, but installed after the compressor, are after coolers, and compressed air dryers. An after cooler is designed to cool the air down upon exiting from the compressor. During the compression, heat is generated that carries into the air supply. An after cooler uses a fan to blow ambient air across coils to lower the compressed air temperature.

When air leaves the after cooler, it is typically saturated since atmospheric air contains moisture. In higher temperatures, the air is capable of holding even more moisture. When this air is then cooled, it can no longer contain all of that moisture and is lost as condensation. The temperature at which the moisture can no longer be held is referred to as the dewpoint. Dryers are installed in the system to remove unwanted moisture from the air supply. Types of dryers available include: refrigerant dryers, desiccant dryers, and membrane dryers.

Also downstream of the compressor are filters used to remove particulate, condensate, and lubricant. Desiccant and deliquescent-type dryers require a pre-filter to protect the drying media from contamination that can quickly render it useless. A refrigerant-type dryer may not require a filter before/after, but any processes or components downstream can be impacted by contaminants in the compressed air system.

Moving on to the demand side, we have the distribution system made up of a network of compressed air piping, receiver tanks when necessary, and point of use filters/regulators. Compressed air piping is commonly available as schedule 40 steel pipe, copper pipe, and aluminum pipe. Some composite plastics are available as well, however PVC should NEVER be used for compressed air as some lubricants present in the air can act as a solvent and degrade the pipe over time.

Receiver tanks are installed in the distribution system to provide a source of compressed air close to the point of use, rather than relying on the output of the compressor. The receiver tank acts as a “battery” for the system, storing compressed air energy to be used in periods of peak demand. This helps to maintain a stable compressed air pressure. It improves the overall performance of the system and helps to prevent pressure drop.

Finally, we move on to the point-of-use. While particulate and oil removal filters may be installed at the compressor output, it is still often required to install secondary filtration immediately at the point-of-use to remove any residual debris, particulate, and oil. Receiver tanks and old piping are both notorious for delivering contaminants downstream, after the initial filters.

Regulator and filter

In any application necessitating the use of compressed air, pressure should be controlled to minimize the air consumption at the point of use. Pressure regulators are available to control the air pressure within the system and throttle the appropriate supply of air to any pneumatic device. While one advantage of a pressure regulator is certainly maintaining consistent pressure to your compressed air devices, using them to minimize your pressure can result in dramatic savings to your costs of compressed air. As pressure and flow are directly related, lowering the pressure supplied results in less compressed air usage.

EXAIR manufactures a wide variety of products utilizing this compressed air to help you with your process problems. If you’d like to discuss your compressed air system, or have an application that necessitates an Intelligent Compressed Air Product, give us a call.

Tyler Daniel, CCASS

Application Engineer
Twitter: @EXAIR_TD

Compressor Image courtesy of Tampere Hacklab via Creative Commons License

Dew Point and Water in Compressed Air: Understanding the Effects

In systems, it is important to understand the type of medium that is being used.  For most EXAIR products, this will be compressed air.  As the air compressor draws in ambient air, it also brings in dust, contamination, and moisture into the system.  If untreated, the pneumatic system will have to contend with these foreign “invaders” that will affect the performance of your pneumatic devices.  One of the most common problems is water.

Water enters the compressed air system from the water vapor already present in the ambient air, which is referred to as the dew point or relative humidity.  When you take ambient air and compress it, the amount of “elbow room” for the water vapor decreases.  This causes the water vapor to condense and create liquid water.  It would be similar to a water-soaked sponge.   As you compress it with your hands, the sponge will not be able to hold on to the water.  Similarly, as the air is compressed, water will start to form and fall out into the compressed air system.  Water is a by-product of a compressed air system.

Visual depiction of the impact of water vapor contained amongst air particles and how this reduces available volume during compression.

The definition for determining if liquid water is present in your system is called the pressure dew point.  Dew point is the temperature at which water vapor will condense and form water droplets.  If the dew point temperature and the air temperature are equal, then the air is considered 100% saturated (water vapor will start to condense to form water droplets).  In compressed air systems, air dryers are used to reduce the dew point temperature.  This means that unless the ambient temperature falls below the dew point temperature, water vapor will not condense into a liquid state.

There are two major types of compressed air dryers; refrigerated and desiccant.  The refrigerated air dryers are the most common, and the dew point is measured at about 39oF (4oC).  So, unless the air temperature gets close to freezing, i.e., the piping system that goes outside in cold weather, water should not be present.  Desiccant air dryers can achieve dew points as low as -40oF (-40oC).  This compressed air is very dry and can be used for medical systems, food and beverage processing, and instrument air.  The reason is that bacteria cannot survive in compressed air that is that dry.  The other types are dewpoint reducing systems, which include membrane and deliquescent dryers. 

Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

For most pneumatic devices, a Filter Separator with an auto-drain should be used as a minimum amount of protection.  Even with systems that have compressed air dryers as described above, they are mechanical devices.  So, failures can occur.  You should review your compressed air system to ensure that your pneumatic system, including EXAIR products, is operating at peak efficiency.  This will include your supply system, compressed air leaks, and blow-off devices. 

Moisture-laden compressed air can cause issues such as increased wear on the pneumatic tools, the formation of rust in piping and equipment, quality defects in painting processes, and frozen pipes in colder climates.  Regardless of what products you’re using at the point-of-use, a compressed air dryer is undoubtedly a critical component of the compressed air system.  Providing clean, dry air to EXAIR Products or other pneumatic devices will help to extend the life of your equipment.  If you wish to discuss more about your compressed air system or how EXAIR can provide a more efficient way to use that compressed air, an Application Engineer will be happy to assist you.

John Ball
International Application Engineer

Twitter: @EXAIR_jb

Compressed Air Dryers : What are they Good For?

Absolutely Nothing….. err ALOT! They are really good for a lot! Specifically removing moisture/condensate from compressed air.

In almost every operation, clean, dry compressed air will result in lower operating costs. The purpose of compressed air dryers is to overcome the dew point of your compressed air by removing water from it. Compressed air can contain humidity, and in the right environments it can reach the dew point temperature and condense into a damaging liquid. This liquid can be problematic, as it can contaminate your products or equipment, causing frozen pipes, and possibly leading to corrosion and other issues.

Now that we know how important they are how do you know which one is right for you?

Types of compressed air Dryers

Refrigerant Dryer – the most commonly used type, the air is cooled in an air-to-refrigerant heat exchanger. (Here is a great blog deep diving on Refrigerant Dryers)
Regenerative-Desiccant Type – use a porous desiccant that adsorbs (adsorb means the moisture adheres to the desiccant, the desiccant does not change, and the moisture can then be driven off during a regeneration process). (Here is a great blog deep diving on Desiccant Dryers)
Deliquescent Type – use a hygroscopic desiccant medium that absorbs (as opposed to adsorbs) moisture. The desiccant is dissolved into the liquid that is drawn out. Desiccant is used up and needs to be replaced periodically. (Here is a great blog deep diving on Deliquescent Dryers)
Membrane Type– use special membranes that allow the water vapor to pass through faster than the dry air, reducing the amount of water vapor in the air stream. (Here is a great blog deep diving on Membrane Dryers)

The selection of an air dryer is done best by the professional who knows or learns the particular end uses, the amount of moisture which each use can tolerate and the amount of moisture which needs to be removed to achieve this level. Air, which may be considered dry for one application, may not be dry enough for another. Dryness is relative. Even the desert has moisture. There is always some moisture present in a compressed air system regardless of the degree of drying.

For compressed air, the best way to specify dryness is to cite a desired pressure dew point. Different types of dryers, therefore, are available with varying degrees of pressure dew point performance. To specify dew point lower than required for an application is not good engineering practice. (Naming a pressure dew point is how to state the degree of dryness wanted.) It may result in more costly equipment and greater operating expense.

If you have questions about compressed air systems and dryers or any of our 15 different Intelligent Compressed Air® Product lines, feel free to contact EXAIR, and I or any of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Drying Supply Side Air With Heat of Compression Dryers

The supply side of a compressed air system has many critical parts that factor in to how well the system operates and how easily it can be maintained.   Dryers for the compressed air play a key role within the supply side are available in many form factors and fitments.  Today we will discuss heat of compression-type dryers.

Heat of compression-type dryer- Twin Tower Version

Heat of compression-type dryers are a regenerative desiccant dryer that take the heat from the act of compression to regenerate the desiccant.  By using this cycle they are grouped as a heat reactivated dryer rather than membrane technology, deliquescent type, or refrigerant type dryers.   They are also manufactured into two separate types.

The single vessel-type heat of compression-type dryer offers a no cycling action in order to provide continuous drying of throughput air.  The drying process is performed within a single pressure vessel with a rotating desiccant drum.  The vessel is divided into two air streams, one is a portion of air taken straight off the hot air exhaust from the air compressor which is used to provide the heat to dry the desiccant. The second air stream is the remainder of the air compressor output after it has been processed through the after-cooler. This same air stream passes through the drying section within the rotating desiccant drum where the air is then dried.  The hot air stream that was used for regeneration passes through a cooler just before it gets reintroduced to the main air stream all before entering the desiccant bed.  The air exits from the desiccant bed and is passed on to the next point in the supply side before distribution to the demand side of the system.

The  twin tower heat of compression-type dryer operates on the same theory and has a slightly different process.  This system divides the air process into two separate towers.  There is a saturated tower (vessel) that holds all of the desiccant.  This desiccant is regenerated by all of the hot air leaving the compressor discharge.  The total flow of compressed air then flows through an after-cooler before entering the second tower (vessel) which dries the air and then passes the air flow to the next stage within the supply side to then be distributed to the demand side of the system.

The heat of compression-type dryers do require a large amount of heat and escalated temperatures in order to successfully perform the regeneration of the desiccant.  Due to this they are mainly observed being used on systems which are based on a lubricant-free rotary screw compressor or a centrifugal compressor.

No matter the type of dryer your system has in place, EXAIR still recommends to place a redundant point of use filter on the demand side of the system.  This helps to reduce contamination from piping, collection during dryer down time, and acts as a fail safe to protect your process.  If you would like to discuss supply side or demand side factors of your compressed air system please contact us.

Brian Farno
Application Engineer

Heat of compression image: Compressed Air Challenge: Drive down your energy costs with heat of compression recovery: