Intelligent Compressed Air: Compressed Air System Components

In any manufacturing environment, compressed air is critical to the operation of many processes. You will often hear compressed air referred to as a “4th utility” in a manufacturing environment. The makeup of a compressed air system is usually divided into two primary parts: the supply side and the demand side. The supply side consists of components before and including the pressure/flow controller. The demand side then consists of all the components after the pressure/flow controller.

The first primary component in the system is the air compressor itself. There are two main categories of air compressors: positive-displacement and dynamic. In a positive-displacement type, a given quantity of air is trapped in a compression chamber. The volume of which it occupies is mechanically reduced (squished), causing a corresponding rise in pressure. In a dynamic compressor, velocity energy is imparted to continuously flowing air by a means of impellers rotating at a very high speed. The velocity energy is then converted into pressure energy.

Still on the supply side, but installed after the compressor, are aftercoolers, and compressed air dryers. An aftercooler is designed to cool the air down upon exiting from the compressor. During the compression, heat is generated that carries into the air supply. An aftercooler uses a fan to blow ambient air across coils to lower the compressed air temperature.

When air leaves the aftercooler, it is typically saturated since atmospheric air contains moisture. In higher temperatures, the air is capable of holding even more moisture. When this air is then cooled, it can no longer contain all of that moisture and is lost as condensation. The temperature at which the moisture can no longer be held is referred to as the dewpoint. Dryers are installed in the system to remove unwanted moisture from the air supply. Types of dryers available include: refrigerant dryers, desiccant dryers, and membrane dryers.

Also downstream of the compressor are filters used to remove particulate, condensate, and lubricant. Desiccant and deliquescent-type dryers require a pre-filter to protect the drying media from contamination that can quickly render it useless. A refrigerant-type dryer may not require a filter before/after, but any processes or components downstream can be impacted by contaminants in the compressed air system.

Moving on to the demand side, we have the distribution system made up of a network of compressed air piping, receiver tanks when necessary, and point of use filters/regulators. Compressed air piping is commonly available as schedule 40 steel pipe, copper pipe, and aluminum pipe. Some composite plastics are available as well, however PVC should NEVER be used for compressed air as some lubricants present in the air can act as a solvent and degrade the pipe over time.

Receiver tanks are installed in the distribution system to provide a source of compressed air close to the point of use, rather than relying on the output of the compressor. The receiver tank acts as a “battery” for the system, storing compressed air energy to be used in periods of peak demand. This helps to maintain a stable compressed air pressure. It improves the overall performance of the system and helps to prevent pressure drop.

Finally, we move on to the point-of-use. While particulate and oil removal filters may be installed at the compressor output, it is still often required to install secondary filtration immediately at the point-of-use to remove any residual debris, particulate, and oil. Receiver tanks and old piping are both notorious for delivering contaminants downstream, after the initial filters.

Regulator and filter

In any application necessitating the use of compressed air, pressure should be controlled to minimize the air consumption at the point of use. Pressure regulators are available to control the air pressure within the system and throttle the appropriate supply of air to any pneumatic device. While one advantage of a pressure regulator is certainly maintaining consistent pressure to your compressed air devices, using them to minimize your pressure can result in dramatic savings to your costs of compressed air. As pressure and flow are directly related, lowering the pressure supplied results in less compressed air usage.

EXAIR manufactures a wide variety of products utilizing this compressed air to help you with your process problems. If you’d like to discuss your compressed air system, or have an application that necessitates an Intelligent Compressed Air Product, give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Compressor Image courtesy of Compressor1 via Creative Commons License

Don’t Fall Victim To Undersized Piping

Pressure drops, incorrect plumbing, undersized piping, insufficient flow; if you hear these terms from tech support of your point of use compressed air products or from your maintenance staff when explaining why a process isn’t working then you may be a victim of improper compressed air piping selection.
Often time this is due to a continued expansion of an existing system that was designed around a decade old plan. It could also come from a simple misunderstanding of what size of piping is needed and so to save some costs, smaller was used. Nonetheless, if you can understand a small number of variables and what your system is going to be used for, you can ensure the correct piping is used. The variables that you will want to consider when selecting a piping size that will suit your need and give the ability to expand if needed are shown below.

  • Minimum Operating Pressure Allowed (psig) – Lowest pressure permitted by any demand side point of use product.
  • System Pressure (psig) – Safe operating pressure that will account for pressure drops.
  • Flow Rate (SCFM) of demand side (products needing the supplied compressed air)
  • Total Length of Piping System (feet)
  • Piping Cost ($)
  • Installation Cost ($)
  • Operational Hours ( hr.)
  • Electical Costs ($/kwh)
  • Project Life (years) – Is there a planned expansion?

An equation can be used to calculate the diameter of pipe required for a known flow rate and allowable pressure drop. The equation is shown below.

A = (144 x Q x Pa) / (V x 60 x (Pd + Pa)
Where:
A = Cross-Sectional are of the pipe bore. (sq. in.).
Q = Flow rate (cubic ft. / min of free air)
Pa = Prevailing atmospheric absolute pressure (psia)
Pd  = Compressor discharge gauge pressure (psig)
V = Design pipe velocity ( ft/sec)

If all of these variables are not known, there are also reference charts which will eliminate the variables needed to total flow rate required for the system, as well as the total length of the piping. The chart shown below was taken from EXAIR’s Knowledge Base.

Once the piping size is selected to meet the needs of the system the future potential of expansion should be taken into account and anticipated for. If no expansion is planned, simply take your length of pipe and start looking at your cost per foot and installation costs. If expansions are planned and known, consider supplying the equipment now and accounting for it if the additional capital expenditure is acceptable at this point.

The benefits to having properly sized compressed air lines for the entire facility and for the long-term expansion goals makes life easier. When production is increased, or when new machinery is added there is not a need to re-engineer the entire system in order to get enough capacity to that last machine. If the main compressed air system is undersized then optimal performance for the facility will never be achieved. By not taking the above variables into consideration or just using what is cheapest is simply setting the system up for failure and inefficiencies. All of these considerations lead to an optimized compressed air system which leads to a sustainable utility.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Why Dryers Are Needed in Compressed Air Systems

Air compressors are extremely proficient at compressing anything in the air they are intaking. With that air that is taken in, moisture is going to be present. The amount of moisture will all depend on where you are located geographically and the ambient conditions in the area. Here in Ohio, we experience all 4 seasons so the moisture content is higher in the air during the summer months, rather than the winter months. When this air is saturated with water vapor and the conditions are right, the air reaches a point it cannot hold any additional water vapor. This point is known as the dew point of the air and water vapor will begin to condense to form droplets.

When ambient air is compressed, heat is generated and the air increases in temperature. In most industrial compressed air systems, the air is then processed to an aftercooler, and that is where condensation begins to form. To remove the condensation, the air then goes into a separator which traps the liquid water. The air leaving the aftercooler is typically saturated at the temperature of the discharge, and any additional cooling that occurs as the air is transferred will cause more liquid to condense out of the air. To address this moisture, compressed air dryers are used.

It is critical to the quality of the system and components downstream that actions are taken to prevent this condensation in the air. Condensation is generally detrimental to any point of use application and or the piping that conveys the air. Rust and/or corrosion can occur anywhere in the piping, leading to scale and contamination of the compressed air and processes. When trying to dry products off using compressed air or using the air to atomize a liquid such as paint, adding in these contaminants and moisture will cost production losses.

There are several options when it comes to the type of dryer that one may consider installing on their compressed air supply side.

• Refrigerant Dryer – the most commonly used type, the air is cooled in an air-to-refrigerant heat exchanger.
• Regenerative-Desiccant Type – use a porous desiccant that adsorbs (adsorb means the moisture adheres to the desiccant, the desiccant does not change, and the moisture can then be driven off during a regeneration process).
• Deliquescent Type – use a hygroscopic desiccant medium that absorbs (as opposed to adsorbs) moisture. The desiccant is dissolved into the liquid that is drawn out. Desiccant is used up and needs to be replaced periodically.
• Heat of Compression Type – are regenerative desiccant dryers that use the heat generated during compression to accomplish the desiccant regeneration.
• Membrane Type– use special membranes that allow the water vapor to pass through faster than the dry air, reducing the amount of water vapor in the air stream.
The air should not be dried any more than is needed for the most stringent application, to reduce the costs associated with the drying process. A pressure dew point of 35°F to 38°F (1.7°C to 3.3°C) often is adequate for many industrial applications. Lower dew points result in higher operating costs.
If you have questions about compressed air systems and dryers or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR, and I or any of our Application Engineers can help you determine the best solution.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Compressed Air Membrane Dryers: What are They? How do They Work?

A critical component on the supply side of your compressor system is the dryer. Atmospheric air contained within a compressed air system contains water vapor. The higher the temperature of the air, the more volume of moisture that air is capable of holding. As air is cooled, this water vapor can no longer be contained and this water falls out in the form of condensation. The temperature where this water will drop out is referred to as the dew point.

At a temperature of 75°F and 75% relative humidity, approximately 20 gallons of water will enter a 25HP compressor during a 24-hour period. As air is compressed, this water becomes concentrated. Since it’s heated during the compression process, this water stays in a vapor form. When this air cools further downstream, this vapor condenses into droplet form.

Moisture within the compressed air system can result in rust forming on the inside of the distribution piping, process failure due to clogged frozen lines in colder weather, false readings from instruments and controls, as well as issues with the point of use products installed within the system.

The solution to this problem is to install a dryer system. We’ve spent some time here on the EXAIR blog reviewing refrigerant dryers , desiccant dryersdeliquescent dryers, and heat of compression dryers. For the purposes of this blog, I’m going to focus on one of the newer styles on the market today: the membrane dryer.

Membrane Dryer

In a membrane dryer, compressed air is forced through a specially designed membrane that permits water vapor to pass through faster than the air. The water vapor is then purged along with a small amount of air while the rest of the compressed air passes through downstream. Generally, the dew point after the membrane dryer is reduced to about 40°F with even lower dew points also possible down to as low as -40°F!

With such low dew points possible, it makes a membrane dryer an optimal choice in outdoor applications that are susceptible to frost in colder climates. Membrane dryers also are able to be used in medical and dental applications where consistent reliability is critical.

A membrane dryer does not require a source of electricity in order to operate. The compact size makes it simple to install without requiring a lot of downtime and floor space. Since they have no moving parts, maintenance needed is minimal. Most often, this maintenance takes the form of checking/replacing filter elements just upstream of the membrane dryer. The membrane itself does need to be periodically replaced, an indicator on the membrane dryer will display when it needs to be changed. If particular instruments or processes in your facility are sensitive to moisture, a membrane dryer might be the best option.

However, there are some drawbacks to these types of dryers. They’re limited to low capacity installations, with models ranging from less than 1 SCFM up to 200 SCFM. This makes them more applicable for point-of-use installations than for an entire compressed air system. The nature in which the membrane dryer works necessitates some of the air to be purged out of the system along with the moisture. To achieve dew points as low as -40°F, this can equate to as much as 20% of the total airflow. When proper filtration isn’t installed upstream, oils and lubricants can ruin the dryer membrane and require premature replacement.

Make sure and ask plenty of questions of your compressor supplier during installation and maintenance of your system so you’re aware of the options out there. You’ll of course want to make sure that you’re using this air efficiently. For that, EXAIR’s wide range of engineered Intelligent Compressed Air Products fit the bill. With a variety of products available for same-day shipment from stock, we’ve got you covered.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD