Compressed Air Distribution System, Keeping Pressure Drop to a Minimum

Compressed air is used to operate pneumatic systems within a facility, and it can be separated into three categories; the supply side, the demand side, and the distribution system.  The supply side is the air compressor, after-cooler, dryer, and receiver tank that produce and treat the compressed air.  They are generally located in a compressor room somewhere in the corner of the plant.  The demand side is the collection of devices that will use that compressed air to do “work”.  These pneumatic components are generally scattered throughout the facility.  To connect the supply side to the demand side, a compressed air distribution system is required.  Distribution systems are pipes which carry the compressed air from the compressor to the pneumatic devices.  For a sound compressed air system, the three sections have to work together to make an effective and efficient system.

An analogy that I like to use is to compare the compressed air system to an electrical system.  The air compressor would be considered the voltage source, and the pneumatic devices would be marked as light bulbs.  To connect the light bulbs to the voltage source, electrical wires are needed which will represent the distribution system.  If the gauge of the wire is too small to supply the light bulbs, the wire will heat up and a voltage drop will occur.  This heat is given off as wasted energy, and the light bulbs will be dim.  The same thing happens within a compressed air system.  If the piping size is too small, a pressure drop will occur.  This is also wasted energy.  In both types of systems, wasted energy is wasted money.  One of the largest systematic problems with compressed air systems is pressure drop.  If too large of a pressure loss occurs, the pneumatic equipment will not have enough power to operate effectively and efficiently.  As shown in the illustration below, you can see how the pressure decreases from the supply side to the demand side.  With a properly designed distribution system, energy can be saved; and, in referencing my analogy above, it will keep the lights on.

Pressure Drop Chart

To optimize the compressed air system, we need to reduce the amount of wasted energy.  This can be caused from leaks or pressure drop.   Leaks can be hidden and are typically located at connections within the distribution system.  In a poorly maintained system, a study found that 30% of the compressor capacity is lost through air leaks on average.  Even though leaks are the “silent killer” to a compressed air system, they can be found with the Ultrasonic Leak Detector

Pressure drop is more of a wide range issue.  It is based on restrictions, obstructions, and piping surface.  Out of these, restrictions are the most common types of pressure drops. The air flow is forced into small areas, causing high velocities.  The high velocity creates turbulent flow which increases the losses in air pressure.  Flow within the pipe is directly related to the velocity times the square of the diameter.  So, if you cut the I.D. of the pipe by one-half, the flow rating will be reduced by 25% of the original rating.  Restriction type of pressure drop can be found in different forms like small diameter pipes or tubing; restrictive fittings like quick disconnects and needle valves, and undersized filters, regulators and valves.

As a rule, air velocities will determine the correct pipe size for the distribution system.  It is beneficial to oversize the pipe to accommodate for any expansions in the future.  For header pipes, the velocities should not be more than 20 feet/sec (6 meter/sec).  For the distribution lines, the velocities should not exceed 30 feet/sec (9 meter/sec).  In following these simple rules, the distribution system can effectively supply the necessary compressed air from the supply side to the demand side.

To have a properly designed distribution system, the pressure drop should be less than 10% from the reservoir tank to the point-of-use.  By following the tips above, you can have the supply side, demand side, and distribution system working at peak efficiency.  If you would like to reduce waste even more, EXAIR offers a variety of efficient, safe, and effective compressed air products to fit within the demand side.  This will include the EXAIR Super Air Knives, Super Air Nozzles, and Safety Air Guns.  This would be the pneumatic equivalent of changing those incandescent light bulbs into LED light bulbs.  If you wish to go further in optimizing your system, an Application Engineer at EXAIR will be happy to help you. 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Photo:  Lightbulb by qimonoPixabay Licence

Pressure Drop Chart by Compressed Air Challenge Organization.

The Basics of a Compressed Air Leak Detection Program

It is no surprise that compressed air can be a costly utility for industrial facilities. It can easily chip away at the bottom line finances if used carelessly and without planning. This is one of the leading reasons we have educated continuously on how to ensure this vital utility is used with safety and conservation in mind. If we have installed all engineered solutions at the point of use throughout a facility, there is still more to be saved. One of the easiest things to do with a utility system inside of a facility is to leave it unchecked and undocumented until something goes wrong. This does not have to be the scenario and in fact, starting a leak detection program in a facility can help to save up to 30% of the compressed air generated.

Leaks cost money!

That’s right, up to 30% of the compressed air being generated in an industrial facility can be exhausting out to ambient through leaks that run rampant throughout the facility. When the point of use production is still working fine, then these sorts of leaks go unnoticed. Another common occurrence goes something like this example: Maybe there is a leak bad enough to drop the packaging line pressure slightly, this may get fixed by bumping up a pressure regulator, production is back up and it is never thought of again. In all actuality this is affecting the production more and more with each leak.

The leaks add additional load onto the supply side. The compressor has to generate more air, the dryer needs to process more air, the auto drains dump more moisture, it all ads up to additional wear and tear also known as false load. All of this additional load on the system can add more maintenance which if left undone can result in system shut downs. One way to begin to eliminate this false load is to deploy a leak detection program. The steps are fairly easy.

Similar to our 6 Steps to Compressed Air Optimization, you start with a baseline of how much air the system is seeing and operating pressures. This begins the documentation process which is critical to the success of the program. Next, acquire an ultrasonic leak detector (ULD) and a layout of your compressed air system piping. Utilizing the ULD, test all compressed air piping along with equipment, and tag each leak that is detected. Next, begin to repair all of the tagged leaks and document the amount of compressed air savings with each repair. This again, is more documentation which leads to giving a quantitative value to the return on investment of the program. Lastly, schedule a follow up scan that recurs on a pre-determined basis to prevent the system from returning to it’s original leaky state.

EXAIR Ultrasonic Leak Detector

If you would like to discuss starting a leak detection program in your facility or have questions about the ULD or any point of use compressed air product, please reach out to an Application Engineer today.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Intelligent Compressed Air: Compressed Air System Components

In any manufacturing environment, compressed air is critical to the operation of many processes. You will often hear compressed air referred to as a “4th utility” in a manufacturing environment. The makeup of a compressed air system is usually divided into two primary parts: the supply side and the demand side. The supply side consists of components before and including the pressure/flow controller. The demand side then consists of all the components after the pressure/flow controller.

The first primary component in the system is the air compressor itself. There are two main categories of air compressors: positive-displacement and dynamic. In a positive-displacement type, a given quantity of air is trapped in a compression chamber. The volume of which it occupies is mechanically reduced (squished), causing a corresponding rise in pressure. In a dynamic compressor, velocity energy is imparted to continuously flowing air by a means of impellers rotating at a very high speed. The velocity energy is then converted into pressure energy.

Still on the supply side, but installed after the compressor, are aftercoolers, and compressed air dryers. An aftercooler is designed to cool the air down upon exiting from the compressor. During the compression, heat is generated that carries into the air supply. An aftercooler uses a fan to blow ambient air across coils to lower the compressed air temperature.

When air leaves the aftercooler, it is typically saturated since atmospheric air contains moisture. In higher temperatures, the air is capable of holding even more moisture. When this air is then cooled, it can no longer contain all of that moisture and is lost as condensation. The temperature at which the moisture can no longer be held is referred to as the dewpoint. Dryers are installed in the system to remove unwanted moisture from the air supply. Types of dryers available include: refrigerant dryers, desiccant dryers, and membrane dryers.

Also downstream of the compressor are filters used to remove particulate, condensate, and lubricant. Desiccant and deliquescent-type dryers require a pre-filter to protect the drying media from contamination that can quickly render it useless. A refrigerant-type dryer may not require a filter before/after, but any processes or components downstream can be impacted by contaminants in the compressed air system.

Moving on to the demand side, we have the distribution system made up of a network of compressed air piping, receiver tanks when necessary, and point of use filters/regulators. Compressed air piping is commonly available as schedule 40 steel pipe, copper pipe, and aluminum pipe. Some composite plastics are available as well, however PVC should NEVER be used for compressed air as some lubricants present in the air can act as a solvent and degrade the pipe over time.

Receiver tanks are installed in the distribution system to provide a source of compressed air close to the point of use, rather than relying on the output of the compressor. The receiver tank acts as a “battery” for the system, storing compressed air energy to be used in periods of peak demand. This helps to maintain a stable compressed air pressure. It improves the overall performance of the system and helps to prevent pressure drop.

Finally, we move on to the point-of-use. While particulate and oil removal filters may be installed at the compressor output, it is still often required to install secondary filtration immediately at the point-of-use to remove any residual debris, particulate, and oil. Receiver tanks and old piping are both notorious for delivering contaminants downstream, after the initial filters.

Regulator and filter

In any application necessitating the use of compressed air, pressure should be controlled to minimize the air consumption at the point of use. Pressure regulators are available to control the air pressure within the system and throttle the appropriate supply of air to any pneumatic device. While one advantage of a pressure regulator is certainly maintaining consistent pressure to your compressed air devices, using them to minimize your pressure can result in dramatic savings to your costs of compressed air. As pressure and flow are directly related, lowering the pressure supplied results in less compressed air usage.

EXAIR manufactures a wide variety of products utilizing this compressed air to help you with your process problems. If you’d like to discuss your compressed air system, or have an application that necessitates an Intelligent Compressed Air Product, give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Compressor Image courtesy of Compressor1 via Creative Commons License

Don’t Fall Victim To Undersized Piping

Pressure drops, incorrect plumbing, undersized piping, insufficient flow; if you hear these terms from tech support of your point of use compressed air products or from your maintenance staff when explaining why a process isn’t working then you may be a victim of improper compressed air piping selection.
Often time this is due to a continued expansion of an existing system that was designed around a decade old plan. It could also come from a simple misunderstanding of what size of piping is needed and so to save some costs, smaller was used. Nonetheless, if you can understand a small number of variables and what your system is going to be used for, you can ensure the correct piping is used. The variables that you will want to consider when selecting a piping size that will suit your need and give the ability to expand if needed are shown below.

  • Minimum Operating Pressure Allowed (psig) – Lowest pressure permitted by any demand side point of use product.
  • System Pressure (psig) – Safe operating pressure that will account for pressure drops.
  • Flow Rate (SCFM) of demand side (products needing the supplied compressed air)
  • Total Length of Piping System (feet)
  • Piping Cost ($)
  • Installation Cost ($)
  • Operational Hours ( hr.)
  • Electical Costs ($/kwh)
  • Project Life (years) – Is there a planned expansion?

An equation can be used to calculate the diameter of pipe required for a known flow rate and allowable pressure drop. The equation is shown below.

A = (144 x Q x Pa) / (V x 60 x (Pd + Pa)
Where:
A = Cross-Sectional are of the pipe bore. (sq. in.).
Q = Flow rate (cubic ft. / min of free air)
Pa = Prevailing atmospheric absolute pressure (psia)
Pd  = Compressor discharge gauge pressure (psig)
V = Design pipe velocity ( ft/sec)

If all of these variables are not known, there are also reference charts which will eliminate the variables needed to total flow rate required for the system, as well as the total length of the piping. The chart shown below was taken from EXAIR’s Knowledge Base.

Once the piping size is selected to meet the needs of the system the future potential of expansion should be taken into account and anticipated for. If no expansion is planned, simply take your length of pipe and start looking at your cost per foot and installation costs. If expansions are planned and known, consider supplying the equipment now and accounting for it if the additional capital expenditure is acceptable at this point.

The benefits to having properly sized compressed air lines for the entire facility and for the long-term expansion goals makes life easier. When production is increased, or when new machinery is added there is not a need to re-engineer the entire system in order to get enough capacity to that last machine. If the main compressed air system is undersized then optimal performance for the facility will never be achieved. By not taking the above variables into consideration or just using what is cheapest is simply setting the system up for failure and inefficiencies. All of these considerations lead to an optimized compressed air system which leads to a sustainable utility.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF