O-Rings, Seals, Gaskets, Maintenace, Filtration – They All Matter

I’ve mentioned it before and I’ll say it again. You can’t teach experience. This was told to me by a mentor at a previous job and of course, younger me thought, “Yeah, yeah I know all I need to know.”  Well, younger me was an idiot and learned many things through experience. Sometimes I am still a slow learner and eventually, I remember those experiences and make decisions based on them. So what does this have to do with o-rings, seals, and gaskets?

I’m in the midst of a light construction project in my house and have reached a stage where some tools that I do not have would come in handy and make the job faster. Younger me would have justified purchasing a new one, experienced me understands a budget and reached out to my network of friends and a good friend said they had the tool I needed. This was a compressed air powered framing nail gun. Straight through nailing, no-problem, toe-nailing, no-problem, this thing won’t break a sweat and your arms will be stronger by the time you are done using it while your thumbs are screaming thank you for not smashing me a hundred times.

The Framing Nail Gun in question

This loan did come with two conditions, one was, he didn’t have any nails to give with it. This was not a problem as I wouldn’t expect a friend to give me free fasteners with a tool loan. The second is the one that concerned me, he said, it does leak a little air but it should still shoot just fine. After working in the compressed air industry for over a decade I have experienced this many times. At that point I knew if you could hear it, chances were it was a bad leak. Upon further inspection, there was a cylinder gasket and rubber spring that were in pieces.

Old Spring Bumper and Main Cylinder Gasket
Gasket pieces and dirty air can result in catastrophic failures.

Nothing that a trip to a local business couldn’t take care of.  A few new parts and discussion with their knowledgeable staff and I had the information needed to rebuild this nail gun to functioning status.

New vs. Old

Oddly enough, my experience and expertise with how the EXAIR products like the No-Drip Air Atomizing Liquid Spray Nozzles operate and how to rebuild them, provided a good foundation about how this tool worked. This repair ended up being very similar to the rebuild on a No-Drip Spray Nozzle.

This story is two-fold, filtration could have prevented a lot of the damage to this gun. This gun uses a good amount of air volume at an expedient pace so keeping it clean and clear of debris helps extend the lifetime of internal parts.  See my video on what happens without filtration below.

The second part is that maintaining and understanding processes to clean/rebuild are crucial to sustainable function of a machine. The cleaning process for this gun was fairly straightforward and using the correct lubricant for reassembly was another critical role. This culminated in a framing nail gun that can now be used to further my project and will more than likely live another decade before needing a rebuild again. That is if filtration and proper lubrication are followed.

Had I not obtained experiences throughout my career that helped me to understand how this tool functioned, the worth of a reliable network of vendors, and the necessity to complete tasks that take me out of my comfort zone I wouldn’t be in the place I am today. Because I have the experience and the network to ask for help it enables me to keep machines running that could have cost valuable production hours had this been a production environment.

EXAIR stocks rebuild kits, gaskets, shims, and parts for all of our product lines which may require a repair. For products which need to be cleaned in order to return back to new performance, we have the instructions or can do it for you here. From time to time they may need a repair or refurb in order to keep functioning at peak performance. If you want to build your trusted network or learn more about how to rebuild or clean EXAIR products, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Benefits of Atomized Liquid Nozzles vs. Liquid Nozzles

There are a great many applications that require a spray (as opposed to a stream) of liquid. Certain droplet sizes, and flow rates, are beneficial for certain applications. For example, if you’re fighting a fire, you want as high of a flow rate as possible – the more water you douse the fire with, the quicker it goes out.  You also want a fairly large droplet size, since a mist would tend to evaporate instead of extinguishing the flames.

Pressure washers also benefit from higher (though not near as high as fire hose) flow rates, and droplet sizes.  You want an appreciable flow rate, because that means high velocity, and good sized droplets combine that velocity with their relative mass to “blast” away dirt and detritus from the surface.

Medicine delivery devices, like asthma inhalers, are designed to produce mid-sized droplets, but pretty low (and controlled) flows.  The droplets need to be small enough to efficiently spread the medicine through the breathing passages, but large enough to where they won’t evaporate before they ‘plant’ on the nasal & bronchial membranes to get absorbed.

These are examples of “liquid-only” nozzles…no other media or means of force are used to effect the spraying action.  Most of the time, the droplet sizes in these applications are measured in hundreds of microns, which “liquid-only” nozzles are ideally suited to generate.  Other applications, however, call for much smaller droplet sizes…such as those only attainable through atomization.

EXAIR Atomizing Spray Nozzles use compressed air to create a fine mist of liquid, with droplet sizes as low as 22 microns.

A typical “liquid-only” nozzle is capable of producing droplet sizes of 300-4,000 microns. Atomizing Nozzles’ droplet sizes are consistently under 100 microns, and can be as small as 20 microns!

Small droplet size is key to cost effectiveness in many applications:

  • Think about expensive coatings…the smaller the droplet size, the better and more even the coverage, and the less you have to spray (and pay) out.
  • Or humidification…smaller droplet size means more stays airborne, for longer, and in a larger space.
  • Petroleum based lubricants, by their nature, only require a thin layer for best results.  Smaller droplets make as even and thin of a layer as possible.
  • Dust control is much more effective with smaller droplet sizes, since the longer the mist lingers in the air, the more dust particles the individual droplets will adhere to…and then drop with them to the surface.  This also prevents getting the surface of the material any wetter than it has to be.
142 distinct models. 8 different patterns. Liquid flow rates from 0.1 to 303 gallons per hour. If you’ve got a spraying application, EXAIR has an Atomizing Nozzle for you!

If you’d like to discuss a liquid spraying application, I’d love to hear from you.  Call me.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Importance Of Air Compressor System Maintenance

It should go without saying, but proper operation of anything that has moving parts will depend on how well it’s maintained.  Compressed air systems are certainly no exception; in fact; they’re a critical example of the importance of proper maintenance, for two big reasons:

*Cost: compressed air, “the fourth utility,” is expensive to generate.  And it’s more expensive if it’s generated by a system that’s not operating as efficiently as it could.

*Reliability: Many industrial processes rely on clean or clean & dry air, at the right pressure, being readily available:

  • When a CNC machine trips offline in the middle of making a part because it loses air pressure, it has to be reset.  That means time that tight schedules may not afford, and maybe a wasted part.
  • The speed of pneumatic cylinders and tools are proportional to supply pressure.  Lower pressure means processes take longer.  Loss of pressure means they stop.
  • Dirt & debris in the supply lines will clog tight passages in air operated products.  It’ll foul and scratch cylinder bores.  And if you’re blowing off products to clean them, anything in your air flow is going to get on your products too.

Good news is, the preventive maintenance necessary to ensure optimal performance isn’t all that hard to perform.  If you drive a car, you’re already familiar with most of the basics:

*Filtration: air compressors don’t “make” compressed air, they compress air that already exists…this is called the atmosphere, and, technically, your air compressor is drawing from the very bottom of the “ocean” of air that blankets the planet.  Scientifically speaking, it’s filthy down here.  That’s why your compressor has an inlet/intake filter, and this is your first line of defense. If it’s dirty, your compressor is running harder, and costs you more to operate it.  If it’s damaged, you’re not only letting dirt into your system; you’re letting it foul & damage your compressor.  Just like a car’s intake air filter (which I replace every other time I change the oil,) you need to clean or replace your compressor’s intake air filter on a regular basis as well.

*Moisture removal: another common “impurity” here on the floor of the atmospheric “ocean” is water vapor, or humidity.  This causes rust in iron pipe supply lines (which is why we preach the importance of point-of-use filtration) and will also impact the operation of your compressed air tools & products.

  • Most industrial compressed air systems have a dryer to address this…refrigerated and desiccant are the two most popular types.  Refrigerant systems have coils & filters that need to be kept clean, and leaks are bad news not only for the dryer’s operation, but for the environment.  Desiccant systems almost always have some sort of regeneration cycle, but it’ll have to be replaced sooner or later.  Follow the manufacturer’s recommendations on these.
  • Drain traps in your system collect trace amounts of moisture that even the best dryer systems miss.  These are typically float-operated, and work just fine until one sticks open (which…good news…you can usually hear quite well) or sticks closed (which…bad news…won’t make a sound.)  Check these regularly and, in conjunction with your dryers, will keep your air supply dry.

*Lubrication: the number one cause of rotating equipment failure is loss of lubrication.  Don’t let this happen to you:

  • A lot of today’s electric motors have sealed bearings.  If yours has grease fittings, though, use them per the manufacturer’s directions.  Either way, the first symptom of impending bearing failure is heat.  This is a GREAT way to use an infrared heat gun.  You’re still going to have to fix it, but if you know it’s coming, you at least get to say when.
  • Oil-free compressors have been around for years, and are very popular in industries where oil contamination is an unacceptable risk (paint makers, I’m looking at you.)  In oiled compressors, though, the oil not only lubricates the moving parts; it also serves as a seal, and heat removal medium for the compression cycle.  Change the oil as directed, with the exact type of oil the manufacturer calls out.  This is not only key to proper operation, but the validity of your warranty as well.

*Cooling:  the larger the system, the more likely there’s a cooler installed.  For systems with water-cooled heat exchangers, the water quality…and chemistry…is critical.  pH and TDS (Total Dissolved Solids) should be checked regularly to determine if chemical additives, or flushing, are necessary.

*Belts & couplings: these transmit the power of the motor to the compressor, and you will not have compressed air without them, period.  Check their alignment, condition, and tension (belts only) as specified by the manufacturer.  Keeping spares on hand isn’t a bad idea either.

Optimal performance of your compressed air products literally starts with your compressor system.  Proper preventive maintenance is key to maximizing it.  Sooner or later, you’re going to have to shut down any system to replace a moving (or wear) part.  With a sound preventive maintenance plan in place, you have a good chance of getting to say when.

If you’d like to talk about other ways to optimize the performance of your compressed air system,  give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

 

Image courtesy of U.S. Naval Forces Central Command/U.S. Fifth Fleet, Creative Commons License 

Reducing Lubricant in a Blanking Operation

We recently chatted with a customer that was looking to improve the lubrication system for multiple blanking lines.  Blanking involves the cutting of sheet metal in a single step, to separate the piece form the surrounding stock. The part that is cut out is the desired product and  is called the ‘blank.’  This operation can be moderate to fast in speed, and the process creates heat, so a lubricant is used to cool and decrease the wear on the tooling.  Our customer was looking for a better way to apply the lubricant.

We proposed the model AN2010SS, a No Drip, internal mix, narrow angle, round fan Atomizing Nozzle.  The nozzle uses compressed air to create a mist of the liquid with very fine droplet size. When using for the  lubricant, a fine layer can be applied over the entire surface without areas of over coverage and waste.  This leads to lower costs for lubricant, and less mess on the blanks.

No Drip Atomizing Nozzle
No Drip Atomizing Nozzle

To simplify the process, the No Drip model was chosen. The No Drip style has the added benefit of positively stopping liquid flow when the compressed air is turned off.  There is no need to independently control the liquid flow via a control system and valve.

Finally, to control the compressed air side, we recommend the Electronic Flow Control (EFC.)  Utilizing a photoelectric sensor, the open position of the press can be detected and using 1 of many program options, the compressed air can be turned on and off to accurately control the application of the lubricant.  Due to the excessive amount of lubricant being used, the customer was applying every other cycle.  The first blank would be overly lubricated so that there would be some remaining for the next.  With the Atomizing Nozzle and EFC, the right amount of lubricant can be applied for each cycle.  The result is reduced lubricant usage, and a better operation.

EFCp4

If you have questions regarding Atomizing Nozzles or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB