You Might be Freezing, but Your Electronics Can Still Overheat

For those of us in the Northern Hemisphere it can be easy to be overrun by static elimination problems during these winter months.  But, colder outside temperatures don’t always mean cooler temperatures for the electronics used in production processes.

dsc08220

This cabinet was facing unaddressed overheating issues before exploring a Cabinet Cooler solution

I received an email from one of our distributors this week describing two applications with failing electronics (shown above and below).  The root cause of failure for both applications was excessive heat inside the enclosures which house electronic devices, even though the ambient air temperatures weren’t abnormally high.  So, we used the Cabinet Cooler Sizing Guide to determine the heat load of each application and make recommendations for proper Cabinet Cooler model numbers.

dsc08223

This cabinet was also overheating, causing problems in the processes controlled by the components inside the cabinet.

What we found was that the heat load in both cases was rather low, but in each case it was enough to cause the electronics to overheat.  When the temperature of the electronic devices exceeds their specified temperature range, they cease to operate, causing downtime of every device tied to the processes they control.  By installing a Cabinet Cooler onto each enclosure, the overheating problem will be quickly and easily solved.  And, because of the relatively low heat load in this application, a small NEMA 12 type Cabinet Cooler was the perfect solution.

If you have an overheating electrical enclosure, whether during the Winter, Spring, Summer, or Fall, contact an EXAIR Application Engineer.  We’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Super Air Knife Shim Design Reduces Operation Costs

A customer of ours had an application where they needed to cool and dry parts on two conveyors that ran side by side.  A single 36″ Super Air Knife was chosen to provide coverage over the full width and to simplify the air plumbing and installation.  As we learned more about the application, it was discovered that there was 10″ section in the center where the the two conveyors butted up, where no parts would pass through, and hence no air was needed.

Fortunately, the EXAIR Super Air Knives can be supplied with custom shim designs to match the air flow requirements of the application.  These shims can be of various thicknesses to increase/decrease the air flow, of alternate materials such as a stainless steel shim in an aluminum air knife to increase the temperature range, or as in this case, designed to provide specific air flow patterns.

By utilizing the special shim design, it is estimated to save $865 per shift per year in compressed air costs versus the standard configuration.  That is a significant savings, and using less compressed air is high on everyone’s priority list.

Check out the video below to learn more about the EXAIR Air Knives.

akvideo

EXAIR manufactures 3 different types of air knives, in 4 different materials, up to 108″ in length.

To discuss your application and see how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

 

 

 

EXAIR Cabinet Cooler Systems – Reliable Protection For Vital Equipment

It’s November, and I’ve had to scrape ice from my windshield three times this week. I’m not complaining – I surrendered the right to complain about the cold when I moved from Florida to Ohio, on purpose, some 25 years ago…this month, in fact. I’m just making an observation. And noting that it’s 73 degrees & sunny in Cocoa Beach right now.

But it is a noteworthy time to be getting urgent calls about cooling applications, like the one I got just the other day.  A manufacturing facility had just suffered the loss of a VERY expensive installation of Variable Frequency Drives (VFD’s) because of a failure of the refrigerant-based cooling system that had come, pre-installed, on the panel.  This machinery, being critical to their process, needed to be brought back on line, RIGHT NOW, and they were the better part of a week away from getting a service technician to look at their current coolers.  They had much better luck with the VFD’s; thanks to a good relationship with a prompt repair service provider, they were going to be operational the next day.  But obviously, they wouldn’t be in operation for very long without proper cooling.

Enter the EXAIR Cabinet Cooler System.  Now, we LOVE to calculate the heat load from the operating conditions of an existing system, but since this one wasn’t running, we were left with estimating the heat load, based on the power requirements of the VFD’s – which did indeed line up with the capacity of the failed A/C system, so we offered a Model 4870 NEMA 4 Cabinet Cooler System – 4,800 Btu/hr – with Thermostat Control.  As a stock catalog product, it was available for same-day shipment, allowing them to resume operation just as quickly as the VFD’s could be restored. The EXAIR Cabinet Cooler product line is available in NEMA 12, 4, and 4X – and also a NEMA 4X in 316SS option for those harsher, more corrosive environments.

EXAIR Cabinet Cooler Systems offer reliable protection from heat, year-round

EXAIR Cabinet Cooler Systems offer reliable protection from heat, year-round.

No matter how cold it gets outside, there are lots of “hot spots” in many workplaces that just don’t care about the regional climate.  If you…or, more to the point, your critical electronics…are in one of those places, isn’t reliable protection a reasonable consideration?  Give me a call; let’s talk.

Russ Bowman
Application Engineer
EXAIR Corporation
(513)671-3322 local
(800)923-9247 toll free
(513)671-3363 fax
Web: www.exair.com
Blog: http://blog.exair.com
Twitter: https://twitter.com/exair_rb
Facebook: http://www.facebook.com/exair

The Adjustable Spot Cooler Is Ideal For Small Parts Cooling

I recently worked with a customer who was trying to cool some small part housings after they leave a wash system. The parts are currently placed in a wash tray where they travel down a conveyor belt and into the washer where they are heated to around 160°F. As the parts exit the washer, the belt is stopped so the parts can be left to cool before an operator places the parts into their dryer system. This cooling process was taking about 15 minutes before the operator was able to safely handle the parts. This cooling delay was negatively affecting their production cycle. They were looking to eliminate the 15 minute cooling cycle by incorporating some type of air cooling system so the parts could be quickly processed to the dryer. They wanted to standardize on a single device as they manufacturer a variety of part shapes with the largest being a valve housing that measures close to 2″ x 2″.

The customer was able to send a few photos of their parts and after reviewing the information sent, I recommended they use our Model # 3925 Adjustable Spot Cooler System with dual point hose kit. Incorporating a Vortex Tube, the Adjustable Spot Cooler is able to produce cold air temperature as low as -30°F, based on ambient supply temperature. The unit features a temperature control valve that allows for simple adjustments of the temperature of the exhausting cold air as well as the volume of air being discharged.  The system includes 2 additional generators which provide more or less airflow volume through the device as well as cooling capacity (Btu/hr.) for even  more control. The dual hose kit separates the cold air into two separate airstreams to provide for a wider coverage area or in this particular case, the customer would be able to treat both sides of the housing for even cooling. The magnetic base makes for easy installation without having to make expensive modifications to their existing setup.

3925 Adjustable Spot Cooler

3925 Adjustable Spot Cooler System – for wider coverage areas with no moving parts to wear out or replace.

EXAIR offers a wide variety of spot cooling products for use in many industrial settings. For help selecting the best product to fit your needs, give me a call, I’d be glad to help.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

 

High Temperature Air Amplifier Cools High Tech Mirror Glass

We recently worked with a customer that manufactures mirrors for the automotive industry.  Today’s mirrors are evolving and becoming more and more complex, including functions such as auto-dimming, and navigation and backup camera display.

3666350134_a00b9e921f_z

Mirror manufacturing involves many steps, one step is the application of the reflective material.  Silver can be deposited chemically, but other materials such as aluminum and gold, and for scientific grade mirrors, silicon oxides and silicon nitrides are applied via an evaporative process within a vacuum chamber.  The metal is heated under the condition of vacuum until it vaporizes and is then deposited on the glass.  Many layers may be deposited depending on the mirror type and reflective properties desired.

Our customer came to us and said they were interested in utilizing the Super Air Amplifier technology in the glass cooling process. After reviewing all of the details of the application, including the ambient temperature conditions, we recommended the EXAIR High Temperature Air Amplifier, model 121021, as the right choice for the cooling application.

IMG_6185.JPG

Model 121021, High Temperature Air Amplifier

The  model 121021 High Temperature Air Amplifier was developed for moving hot air and to be able withstand high temperature ambient conditions. This special design is rated for environments up to 700°F and its surface is protected from heat stress by a mil-spec coating process developed for the aircraft industry. It uses just 8.1 SCFM of 80 PSIG compressed air, has an amplification ration of 18:1, and a sound level of only 72 dBA. This highly efficient and quiet air amplifier was the right choice, and the customer has reported back that they ‘have been working good’ in the application. They are also used to circulate hot air in ovens or keep even temperatures on large rotational molds. They also solve heat/cooling problems in glass manufacturing, primary metals, heat treating and power generation. They are the right choice for rugged, high temperature processes.

EXAIR makes other specialty Air Amplifiers, including models made for specific customer applications.  These include designs with flange mounting for exhausting flue gases from a  furnace and a design with a PTFE plug to help pull sticky material through a process while preventing the material from depositing on the Air Amplifier.

To discuss your application and how an Air Amplifier would help out, feel free to contact EXAIR and one our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

 

Mirror Photo Credit – Steve Damron – via Creative Commons Licensei

EXAIR Cold Gun Provides Dry Cooling for Gang Drill

gang-drill-1

A gang drill in need of dry cooling

When working with machining centers of any sort, proper cooling is critical to producing in-spec parts.  Inadequate cooling deteriorates the tooling and can lead to defective or rejected parts, so most of us try to avoid overheating whenever possible.  Traditionally, the best way to cool the cutting blade or bit of a machining center was to use liquid coolant, routing the liquid to the required areas of the machine, and then reclaiming the coolant to be used again while cleaning the finished parts of the coolant residue.

This process, while effective, creates a considerable amount of cleanup, both for the machining area, and for the machined parts.  Because of this, dry cooling can provide distinct advantages when compared to a traditional setup.

gang-drill-with-red-arrow

Liquid cooling spilled onto the floor as a result of machining operations

In the setup shown above, a gang drill with 24 drill heads cuts into various aluminum profiles.  As shown in the picture, the process generates a significant strings and chips, and the current setup using liquid cooling results in coolant outside of the desired workspace (see the red arrow in the bottom right, highlighting liquid coolant on the floor – a potential safety hazard).  The end user in this case was in search of a way to maintain cooling for the drills while eliminating the liquid spillover.  The solution, was the EXAIR Cold Gun model 5315 with two cold outlets

When faced with the potential to outfit a machine with a completely new cooling system, we’ve found that a short test can go a long way toward implementing a proper solution.  So, testing a single Cold Gun with two outlets can be tested on a single drill head, with the results reviewed before installing additional units onto the machine.  Our Application Engineering team is available to assist this customer every step of the way with product selection, installation and testing results, and full machine outfitting.

Providing a viable solution and service to the customer have opened the door to removing liquid cooling from this machine.  This will eliminate cleaning of the aluminum profiles after machining, thus reducing the total input required to produce a finished product, and it will eliminate the safety hazard of having liquid coolant on the floor surrounding the machine as well.

If you have a similar application or would like to speak to an Application Engineer about dry cooling, give us a call – we’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

The Adjustable Spot Cooler Provides High Flexibility and Effectiveness

A customer emailed me with some questions about the using the EXAIR spot cooling technology for use on PEEK material being machined in a Swiss Turning machine. Typically, apart from drilling and parting, coolants are not necessary for thermoplastic machining operations.  In order to obtain the best surface finish and tightest tolerances, keeping the cutting area cool is required.  The ideal goal was to provide sub-zero air to the cutting area, while being quiet and easy to operate.  After reviewing the various EXAIR spot cooling products, it was determined that the Adjustable Spot Cooler System would satisfy all of the requirements.

asc-single-point-2

Model 3825 Adjustable Spot Cooler System

The Adjustable Spot Cooler System shown above is capable of producing temperatures from -30°F to room temperature, with just the turn of a knob.  Included in the package are (2) additional generators, which allow for more or less cold air flow rate, depending on the application cooling needs.  With the magnetic base, the system can be easily positioned, and the flexible hose allows for precise aim of the cold air flow. And, sound levels are kept below 75 dBA.

asc_onlathecmyk

Model 3825 Used in a Turning Operation

To recap, the Adjustable Spot Cooler System provides adjustable cold air temperature with the simple turn of a knob, includes additional generators to provide wide ranging flow rates, has a magnetic base to allow for positioning anywhere, on any machine, and has a flexible hose for directing the cold air wherever it is needed.

I would say that it is a Very Adjustable Spot Cooler.

To discuss spot cooling and your application, we ask you to contact EXAIR and one our  Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

%d bloggers like this: