Factors When Sizing a Cabinet Cooler System

Heat can cause real problems for electrical and electronic components, in a hurry…we all know that.  Fortunately, we can also specify the right Cabinet Cooler System for you in a hurry too.  And since we keep them all in stock, we can get it to you in a hurry as well.

You can access our Cabinet Cooler Sizing Guide online, here.  You can fill in the blanks and submit it, or you can call in your data.  We do it over the phone all the time, and it only takes a minute.  Here’s what we’re going to ask for, and why:

NEMA 4 Cabinet Cooler
  • Enclosure dimensions.  We need the length, width, and height of your enclosure to calculate the heat transfer surface, and the volume of the enclosure.
  • Current Internal Air Temperature.  How hot is it inside your enclosure?  This is the starting point for figuring out the internal heat load…how much heat the components inside the box is generating.  This needs to be the air temperature – don’t use a heat gun, or you’re going to give me the surface temperature of something that may or may not be close to what I need.  Just put a thermometer in there for a few minutes.
  • Current External Air Temperature.  How hot is it in the area where the enclosure is located?  We’re going to compare this to the internal air temperature…the difference between the two is actually proportional to the heat load.  Also, if there’s anything cooling the enclosure right now (like circulating fans; more on those in a minute,) this reading is key to figuring out how much heat they’re removing.
  • Maximum External Air Temperature.  How hot does it get in the area on, say, the hottest day of summer?  We’ll need this to calculate the external heat load…how much heat the enclosure picks up from its surroundings.
  • Maximum Internal Temperature Desired.  Most electrical and electronic component manufacturers publish a maximum operating temperature of 104F (40C) – it’s kind of an “industry standard.”  Based on this, a lot of us in the enclosure cooling business set our products’ thermostats to 95F (35C) – if we’re maintaining the air temperature a decent amount cooler than the components are allowed to get, history and practice has shown that we’re going to provide more than adequate protection.  If your enclosure houses something with more sensitive temperature limitations, though, we can work with that too…that’s the only time you’re going to want to put something other than 95F (35C) in this field.
  • Cabinet Rating.  This is all about the environment…we offer three levels of protection, per NEMA standards:
    •  NEMA 12 – oil tight, dust tight, indoor duty.
    • NEMA 4 – oil tight, dust tight, splash resistant, indoor/outdoor duty.
    • NEMA 4X – oil tight, dust tight, splash resistant, corrosion resistant, indoor outdoor duty.

                     The NEMA rating does not affect the cooling capacity at all.

  • Other:  If the enclosure is mounted to the side of a machine, or a wall in the plant, you really don’t need to put anything here.  If it’s outside and exposed to direct sunlight, tell us what the surface finish (i.e., polished metal, painted grey, etc.) is so that we can account for solar loading too.  If anything else is unusual or peculiar about the application, let us know that too.
  • My Cabinet Is…Not Vented, Vented, Wall Mounted, Free Standing, Fan(s).  We’ll use what you tell us here to verify heat transfer surface (a wall mounted cabinet’s back surface isn’t a radiating surface, for example.)  Also, I mentioned fan cooling before, so without further ado…
  • Fan diameter or SCFM.  If there are fans circulating air into (and/or out of) the enclosure, they’re providing a finite amount of cooling right now.  Proper installation of a Cabinet Cooler System is going to require their removal.  Running a Cabinet Cooler System on a vented enclosure is just like running your air conditioner with the windows open.  So, if we know the size (or the SCFM…sometimes there’s a label on those fans, and we LOVE those folks who do that) then we can use that, and the temperatures you gave us above, to take the fan cooling into account.

Once we have all this information, it’s down to the math. Like I said, we do this all the time (especially during “Cabinet Cooler Season”) – give me a call.  Your heat problem isn’t waiting; why should you?

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on FacebookTwitter: @EXAIR_JS





EXAIR Cabinet Cooler Systems – How Do they Work?

Cabinet Cooler systems eliminate heat related problems by providing a temperature controlled environment inside of electrical enclosures. Typically set to maintain 95F (but also adjustable) a Cabinet Cooler system can withstand harsh, remote environments with little maintenance. They cool heat loads up to 5600 Btu/Hr and are UL listed to maintain your cabinet’s NEMA integrity. 

Compressed air enters the vortex tube powered Cabinet Cooler and is converted into two streams, one hot and one cold. Hot air from the vortex tube is muffled and exhausted through the vortex tube exhaust. The cold air is discharged into the cabinet through the included cold air distribution kit. The displaced hot air in the cabinet rises and exhausts to atmosphere through the cabinet cooler body. The control cabinet is both cooled and purged with cool, clean air. Outside air is never able to enter the control panel.

sl17_Nema4
How it works! 

EXAIR’s compressed air operated, Cabinet Cooler Systems are a low cost, reliable way to cool and purge electronic control panels. There are no moving parts to wear out and no filters to replace, eliminating the need for constant monitoring.

NEMA Type 12 (IP54) and NEMA 4 and 4X (IP66) models are available that are very compact and mount in just minutes through an ordinary electrical knockout.

Cabinet Cooler Family
EXAIR Cabinet Cooler Sizes 

Available in a wide range of cooling capacities, ranging from 275 Btu/hr. for our smallest system, up to 5,600 Btu/hr. for our largest Dual System.

Thermostat control systems are the most efficient way to operate a Cabinet Cooler as they limit compressed air use by operating only when the temperature inside the enclosure approaches critical levels. Continuous Operating Systems are recommend when constant cooling and constant positive pressure inside the panel is required.

Thermostat controlled Cabinet Cooler Systems are the best option when experiencing fluctuating heat loads caused by environment or seasonal changes. Thermostatically Controlled Systems include a Cabinet Cooler, adjustable thermostat, solenoid valve, cold air distribution kit consisting of tubing and self adhesive clips to duct the cold air inside the panel and a filter separator to remove any water or contaminants from the supply.

Thermostat and ETC

If you would like to discuss our cabinet cooler systems or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on FacebookTwitter: @EXAIR_JS

Informal Video: Changing the Generator in an Adjustable Spot Cooler

One of our more versatile cooling devices is the Adjustable Spot Cooler.  The temperature can be changed from ambient down to -30 deg. F (-34 deg. C) with a turn of a knob.  In addition to this, the cooling capacity can be modified as well by simply changing the generator.  In this video, I will show you how to do this.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Opportunities To Save On Compressed Air

If you’re a regular reader of the EXAIR blog, you’re likely familiar with our:

EXAIR Six Steps To Optimizing Your Compressed Air System

This guideline is as comprehensive as you want it to be.  It’s been applied, in small & large facilities, as the framework for a formal set of procedures, followed in order, with the goal of large scale reductions in the costs associated with the operation of compressed air systems…and it works like a charm.  Others have “stepped” in and out, knowing already where some of their larger problems were – if you can actually hear or see evidence of leaks, your first step doesn’t necessarily have to be the installation of a Digital Flowmeter.

Here are some ways you may be able to “step” in and out to realize opportunities for savings on your use of compressed air:

  • Power:  I’m not saying you need to run out & buy a new compressor, but if yours is

    Recent advances have made significant improvements in efficiency.

    aging, requires more frequent maintenance, doesn’t have any particular energy efficiency ratings, etc…you might need to run out & buy a new compressor.  Or at least consult with a reputable air compressor dealer about power consumption.  You might not need to replace the whole compressor system if it can be retrofitted with more efficient controls.

  • Pressure: Not every use of your compressed air requires full header pressure.  In fact, sometimes it’s downright detrimental for the pressure to be too high.  Depending on the layout of your compressed air supply lines, your header pressure may be set a little higher than the load with the highest required pressure, and that’s OK.  If it’s significantly higher, intermediate storage (like EXAIR’s Model 9500-60 Receiver Tank, shown on the right) may be worth looking into.  Keep in mind, every 2psi increase in your header pressure means a 1% increase (approximately) in electric cost for your compressor operation.  Higher than needed pressures also increase wear and tear on pneumatic tools, and increase the chances of leaks developing.
  • Consumption:  Much like newer technologies in compressor design contribute to higher efficiency & lower electric power consumption, engineered compressed air products will use much less air than other methods.  A 1/4″ copper tube is more than capable of blowing chips & debris away from a machine tool chuck, but it’s going to use as much as 33 SCFM.  A Model 1100 Super Air Nozzle (shown on the right) can do the same job and use only 14 SCFM.  This one was installed directly on to the end of the copper tube, quickly and easily, with a compression fitting.
  • Leaks: These are part of your consumption, whether you like it or not.  And you shouldn’t like it, because they’re not doing anything for you, AND they’re costing you money.  Fix all the leaks you can…and you can fix them all.  Our Model 9061 Ultrasonic Leak Detector (right) can be critical to your efforts in finding these leaks, wherever they may be.
  • Pressure, part 2: Not every use of your compressed air requires full header pressure (seems I’ve heard that before?)  Controlling the pressure required for individual applications, at the point of use, keeps your header pressure where it needs to be.  All EXAIR Intelligent Compressed Air Product Kits come with a Pressure Regulator (like the one shown on the right) for this exact purpose.
  • All of our engineered Compressed Air Product Kits include a Filter Separator, like this one, for point-of-use removal of solid debris & moisture.

    Air Quality: Dirty air isn’t good for anything.  It’ll clog (and eventually foul) the inner workings of pneumatic valves, motors, and cylinders.  It’s particularly detrimental to the operation of engineered compressed air products…it can obstruct the flow of Air Knives & Air Nozzles, hamper the cooling capacity of Vortex Tubes & Spot Cooling Products, and limit the vacuum (& vacuum flow) capacity of Vacuum Generators, Line Vacs, and Air Amplifiers.

Everyone here at EXAIR Corporation wants you to get the most out of your compressed air use.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

Upgrade Blowoff Applications with Engineered Products to Increase Safety and Efficiency

At EXAIR, it’s our business to make sure that you get the most out of your compressed air system.  We’ve got a Six Step plan to help you do just that, and one of those steps is the topic of today’s blog:

We have a couple of ways to help with step #1.  You can use a Digital Flowmeter to measure your total compressed air usage, and take advantage of our Efficiency Lab service to determine the consumption of individual compressed air devices that may be running up the total.  Based on our performance tests of those devices, we can recommend suitable EXAIR Intelligent Compressed Air Products to replace them with, along with the expected reductions in air consumption & noise levels…quieter is always better too.

We’re going to skip right over Step #2…just for now…but if you can’t wait, click on the picture above for more on finding & fixing leaks.

Once you get our recommended replacements in (I mean, why wouldn’t you?), they’re going to be part of your compressed air system, so naturally, we want to make sure you get the most out of them as well.  Key considerations are suitable supply lines, and proper installation.

In the case of a Super Air Nozzle or Air Jet, these are oftentimes one and the same.  They’re all small enough, and lightweight enough, to be adequately supported by compressed air piping (assuming the piping is adequately supported,) metal tubing (via a compression fitting adapter,) or even mounting solutions like our Stay Set Hoses.

Just a few ideas for installing an EXAIR Super Air Nozzle

Sometimes, though, you need a firm, vibration-resistant mounting…that’s where we recommend our Swivel Fittings.  A hex retainer tightly locks the ball in position, but allows for easy repositioning when loosened.  They come in standard NPT sizes from 1″ NPT down to 1/8″ NPT, and we even have them for the M4, M5, and M6 metric threads for our Atto, Pico, and Nano Super Air Nozzles.

Typical threaded fittings are limited in the angles you can achieve. EXAIR Swivel Fittings provide 50° of adjustability.

Even a highly efficient blow off needs to be aimed well in order to do its job well.  If you’d like to discuss how to get the most out of your compressed air system – or our products – give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

6 Primary Benefits of Cabinet Coolers (Vortex Tube Enclosure Coolers)

First off, I want to dispel any notion that there might be something that’s NOT great about EXAIR Cabinet Cooler Systems.  Are there other methods to provide effective cooling to an electrical panel?  Of course there are, and frankly, if one particular method was clearly superior in any & every situation, the makers of that one would have put all the others out of business by now.  But for now, let’s consider:

1. Simplicity: Cabinet Cooler Systems need compressed air to work.  That’s it.  Supply them with clean, moisture free air, and they’ll run darn near indefinitely, maintenance free. What could be easier?

2. Control:  Continuous Operation systems have their place (more on that in a minute,) but in most cases, Thermostat Control is preferred, for a couple of reasons:

  • Most electrical and electronic components have a rated maximum operating temperature of 104°F (40°C).  Maintaining the air temperature at a reasonable level less than that is all you need…any lower, and you’re just wasting energy, no matter what method of cooling you use.  Our Thermostats are preset at 95°F (35°C) to ensure heat protection, while limiting operating costs.
  • There is such as thing as “too cold.” Particularly sensitive instrumentation & controls may exhibit varied behavior at different temperatures.
  • Our bimetallic probe-type thermostats are ideal for controlling air temperature.  They have much faster response time than other mechanical styles, meaning the system won’t keep running once it’s cool enough, and it starts running as soon as it starts getting too hot.  They’re also easy to reset, if the preset of 95°F (35°C) is not suitable for particular specific needs.
  • If constant monitoring, or frequent changes in control temperature are desired, the ETC Electronic Temperature Control offers these benefits, via a quick response thermocouple and pushbutton operation.

3. Environmental concerns: No matter where a panel is located in your plant, and what it might be exposed to, EXAIR Cabinet Cooler Systems will keep the environment out of that panel:

  • NEMA 12 Cabinet Cooler Systems are oil tight, dust tight, and rated for indoor duty.
  • NEMA 4 systems provide the same protection as NEMA 12, and are additionally splash resistant, and are rated for indoor/outdoor duty.
  • NEMA 4x systems offer NEMA 4 protection, and are made of stainless steel for corrosion resistance.
  • HazLoc Cabinet Coolers are UL Classified & CE Compliant.

    HazLoc Cabinet Cooler Systems also maintain NEMA 4 or 4X integrity, and are for use with classified enclosure purge & pressurization systems in hazardous locations:

    • Class I Div 1, Groups A, B, C and D
    • Class II Div 1, Grouds E, F and G
    • Class III

4. Dependable protection: In most cases, the less moving parts something has, the more reliable it is.  With NO moving parts, EXAIR Cabinet Cooler Systems absolutely prove this out:

  • Unlike refrigerant-based systems, there are no filters to clean, no coils to foul or corrode, and no electric motors to burn out.
  • No potential contaminants from outside air ever enter the enclosure…all the cold air comes from your compressed air supply, through an Automatic Drain Filter Separator fitted with a 5 micron particulate element and a centrifugal separator for moisture removal.

5. Selection:  Cooling capacities range from 275 Btu/hr to 5,600 Btu/hr, and they’re all in stock, ready for immediate shipment.

6. Special considerations:  “Customized” usually means high prices and long lead times. Not so for a number of EXAIR Cabinet Cooler System options:

  • This NEMA 4 Dual Cabinet Cooler System protects a critical equipment panel on a hot roll steel line.

    High Temperature systems are available from stock, for installation in areas where the ambient temperature can exceed 125°F (52°C,) all the way up to 200°F (93°C.)

  • Continuous Operation Systems aren’t the only way to constantly keep environmental contaminants out…Non-Hazardous Purge (NHP) systems combine the efficiency of Thermostat Control by always passing a small amount of air flow, to provide a slight positive pressure, even when the temperature is lower than the Thermostat set point.  This way, the Cabinet Cooler System only operates to maintain appropriate cooling, but the panel is still protected all the time.
  • When additional protection from harsh and corrosive environments is needed, or when specified by strict facility requirements (I’m looking at you, Food, Pharma, and Nuclear Plants,) our NEMA 4X Cabinet Cooler Systems can be provided in Type 316 Stainless Steel construction, from stock.

6.5 Simplicity, part 2:  Not only are they simple to operate…

  • They install, in minutes, through a standard knockout in the top of your enclosure.

    Side Mount Kits maintain NEMA 4/4X Splash Resistance.
  • If there’s no room on top, or if it’s just more practical, you can put them on the side of the panel using a Side Mount Kit.
  • Don’t know which one to pick, or need help determining your heat load?  Then use our Cabinet Cooler System Sizing Guide.  There’s one in the catalog that you can fill out and fax or email to us, or you can find it on our website under the “Features” tab on any Cabinet Cooler product page…just fill in the blanks and click “Submit.”  Or, you can always simply call in the data to an Application Engineer.  We can calculate your heat load in just a minute or so, and we do it over the phone all the time.

If you’d like to find out more about heat protection for your electrical or electronic panels, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Cold Guns for Spot Cooling or Replacing Mist Systems

By using only a source of compressed air, the Cold Gun and High Power Cold Gun produces a stream of clean, cold air 50°F (28°C) below your compressed air supply temperature. The Cold Gun is very quiet at only 70 dBA and has no moving parts to wear out. Just supply it with clean compressed air and it’s maintenance free.

How does it work, and what are the benefits?

  • The Cold Gun uses compressed air to produce a stream of clean, cold air at 50°F (28°C) below supply air temperature. Generally this will be 20°F-30°F outlet temperature.
  • They use Vortex Tube technology…no moving parts to wear out.

How A Vortex Tube WorksInstant cold air flow with no moving parts!

  • Cold flow and temperature are preset to optimize cooling capability, and are non-adjustable to prevent freeze-up during use.
  • Eliminates the expense of both the purchase & disposal of cutting fluids when replacing expensive mist systems.
  • Removes the potential for health problems associated with breathing mist & vapors, and the safety issue of slipping on a wet floor.

Cold Gun Aircoolant System selection is easy & straightforward…we offer a standard, and a High Power version to meet your specific needs.

CG
Four systems to choose from, to meet most any need.

We also offer Single & Dual Point Hose Kits, to further meet the needs of your application.

One of the best applications I have seen with our cold gun came from a customer in Peru. They are a gold mining operation and they were having trouble with the liquid they were using to cool a saw. Read all about it here!

IMG_20180613_094120_HDR

If you have an application that you believe would be better served by the use of an EXAIR Cold Gun, give us a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS