EXAIR Air Amplifiers Blow Fans out of the Water!

EXAIR’s product line contains many products that can be used for cooling. The focus of this blog will be Super Air Amplifiers. These often times get placed in a head-to-head competition with an electric fan. The best part, they easily come out on top.

When looking at the benefits other than performance and rate of cooling due to air entrainment, many customers prefer the Super Air Amplifier due to the fact there are no moving parts. This comes into play when cooling within in a hard-to-reach area or within a harsh process is needed.  Placing an electric motor with a blade held on by fasteners may not be desirable from a maintenance standpoint. The Super Air Amplifiers do not require electricity and there is not a motor or bearings that would need to be replaced or inspected.

Another benefit is the small footprint of the Super Air Amplifier. This can also be seen within the video below where the Air Amplifier is shown is able to produce 341 SCFM (9,650 SLPM) in amplified airflow. Compared to the fan in the video, the amplifier is less than a 1/4 of the size but outperforms the fan in cooling the metal block! This allows users to place a small unit inside a tight area or chamber that requires large volumes of air.  For instance, a rotomolded part that has a large chamber, and it needs surfaces to be cooled in order for the part to hold its shape from the mold rather than warp.  This can also be coupled with the fact that a Super Air Amplifier can be ducted on either the suction or discharge side in order to retrieve cool air or move the warm air out of the area.

Speaking of warm, the Super Air Amplifiers are also manufactured to withstand up to 275 °F (135 °C) from stock.  Stainless Steel and High-temperature models go well beyond that temp, up to 700 °F (374 °C). Custom-designed (flanges and different materials are common) versions are also available with short lead-times.

If you would like to discuss the benefits to a Super Air Amplifier further, feel free to contact us.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Super Air Amplifiers vs. Electric Fans

EXAIR’s product offerings contain many products that can be used for cooling. The focus of this blog will be Super Air Amplifiers. These often times get placed in a head to head competition with an electric fan. The best part, they easily come out on top.

Our own Tyler Daniel produced a great video showcasing how efficient it is to cool a part using the Super Air Amplifier rather than a fan.

When looking at the benefits other than performance and rate of cooling due to air entrainment, many customers prefer the Super Air Amplifier due to the fact there are no moving parts. This comes into play when cooling within in a hard to reach area or within a harsh process is needed.  Placing an electric motor with a blade held on by fasteners may not be desirable from a maintenance standpoint. The Super Air Amplifiers do not require electricity, meaning there is not a motor or bearings that would need to be replaced or inspected.

Another benefit is the small footprint of the Super Air Amplifier. This can also be seen within the video above where the Air Amplifier is shown is able to produce 341 SCFM (9,650 SLPM) in amplified airflow.  This gives the ability to place a small unit inside of a chamber that needs large volumes of air flowed through it.  For instance, a rotomolded part that has a large chamber and it needs surfaces to be cooled in order for the part to hold its shape from the mold rather than warp.  This can also be coupled with the fact that a Super Air Amplifier can be ducted on either the suction or discharge side in order to retrieve cool air or move the warm air out of the area.

Speaking of warm, the Super Air Amplifiers are also manufactured to withstand up to 275°F (135°C) from stock.  Stainless Steel and High-temperature models go well beyond that temp, as seen above. Custom-designed (flanges and different materials are common) versions are also available in short lead-times.

If you would like to discuss the benefits to a Super Air Amplifier further, feel free to contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Discovery of The Vortex Tube

There are many theories regarding the dynamics of a vortex tube and how it works. Many students have studied them in hopes of advancing the physics or as part of their undergrad studies. The man that started it all was not intentionally researching it, however.

The Vortex Tube was invented by accident in 1928, by George Ranque, a French physics student. He was performing experiments on a vortex-type pump that he had developed and noticed that warm air exhausted from one end and cold air from the other. Ranque quickly changed his focus from the pump to start a company taking advantage of the commercial possibilities for this odd little device that produced both hot and cold air, using only compressed air, with no moving parts. The company was not successful, and the vortex tube was forgotten until 1945 when Rudolph Hilsch, a German physicist, published a widely read paper on the device.

A vortex tube uses compressed air as a power source, has no moving parts, and produces hot air from one end and cold air from the other. The volume and temperature of the two air streams is adjustable with a valve built into the hot air exhaust.  Temperatures as low as -50°F (-46°C) and as high as 260°F (127°C) are possible.

Compressed air is supplied to a vortex tube and passes through nozzles that are tangent to an internal counterbore. As the air passes through it is set into a spiraling vortex motion at up to 1,000,000 rpm. The spinning stream of air flows down the hot tube in the form of a spinning shell, like a tornado (in red). The control valve at the end allows some of the warmed air to escape and what does not escape reverses direction and heads back down the tube as a second vortex (in blue) inside of the low-pressure area of the larger warm air vortex. The inner vortex loses heat and exits through the other end of as cold air.

It is thought that both the hot and cold air streams rotate in the same direction at the same angular velocity, even though they are traveling in opposite directions. A particle of air in the inner stream completes one rotation in the same time of an air particle in the outer stream. The principle of conservation of angular momentum would say that the rotational speed of the inner vortex should increase because the angular momentum of a rotating particle (L) is equal to the radius of rotation (r) times it’s mass (m) times its velocity (v).  L = r•m•v.  When an air particle moves from the outer stream to the inner stream, both its radius (r) and velocity (v) decrease, resulting in a lower angular momentum. To maintain an energy balance for the system, the energy that is lost from the inner stream is taken in by the outer stream as heat. Therefore, the outer vortex becomes warm and the inner vortex is cooled.

At EXAIR, we have harnessed the cooling power of the vortex tube, and it can be found and utilized in such products as Spot CoolersCabinet Coolers, and Vortex Tubes themselves. If you have questions about Vortex Tubes, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Max Refrigeration vs. Max Cold Temp Vortex Tubes

Here at EXAIR, our vortex tubes are offered in two separate series. The reason for this is to optimize the performance of the cold air temperature drop when operating with opposite ends of the cold fraction chart. The maximum refrigeration vortex tubes, 32xx series, perform optimally when they are set to a greater than 50% cold fraction.  The maximum cold temp vortex tubes, 34xx series, perform optimally when they are set to a less than or equal to 50% cold fraction. The cold fraction is discussed more in-depth within this link from Russ Bowman, Vortex Tube Cold Fractions Explained. This blog is going to explain a little further why one series of vortex tubes would be chosen for an application over another.

Cold Fraction
EXAIR Vortex Tube Performance Chart

Maximum refrigeration (32xx) vortex tubes are the most commonly discussed of the two types when discussing the optimal selection of the vortex tube for an application. The 32xx series vortex tubes achieve a maximum refrigeration output when operated at 100 psig inlet pressure with around  80% cold fraction. This would give a temperature drop from incoming compressed air temperature of 54°F (30°C). The volumetric flow rate of cold air will be 80% of the input flow which means only 20% is being exhausted as warm exhaust air. By keeping the flow rate higher the air is able to cool a higher heat load and is the reason the vortex tube is given a BTU/hr cooling capacity.

Vortex Tube Hot Valve Adjustment

Maximum cold temperature (34xx) tubes are less common as their applications are a little more niche and require a very pinpoint application. Rather than changing the temperature inside of a cooling tunnel or cooling an ultrasonic welding horn, the max cold temp vortex tube is going to have a minimum cold flow rate, less than 50% of input volumetric flow.  This minimal flow will be at temperature drops up to 129°F (71.1°C) from the incoming compressed air temperature.  This air is very cold and at a low flow. A 20% cold fraction exhausts 80% of the input volume as hot air. This type of volume would be ideal for sensor cooling, pinpoint cooling of a slow-moving operation, or thermal testing of small parts.

In the end, EXAIR vortex tubes perform their task of providing cold or hot air without using any refrigerants or moving parts. To learn more about how they work, check out this blog from Russ Bowman. If you want to see how to change the cold fraction, check out the video below. If you would like to discuss anything compressed air related, contact an application engineer, we are always here to help.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF