Discovery of The Vortex Tube

There are many theories regarding the dynamics of a vortex tube and how it works. Many students have studied them in hopes of advancing the physics or as part of their undergrad studies. The man that started it all was not intentionally researching it, however.

The Vortex Tube was invented by accident in 1928, by George Ranque, a French physics student. He was performing experiments on a vortex-type pump that he had developed and noticed that warm air exhausted from one end and cold air from the other. Ranque quickly changed his focus from the pump to start a company taking advantage of the commercial possibilities for this odd little device that produced both hot and cold air, using only compressed air, with no moving parts. The company was not successful, and the vortex tube was forgotten until 1945 when Rudolph Hilsch, a German physicist, published a widely read paper on the device.

A vortex tube uses compressed air as a power source, has no moving parts, and produces hot air from one end and cold air from the other. The volume and temperature of the two air streams is adjustable with a valve built into the hot air exhaust.  Temperatures as low as -50°F (-46°C) and as high as 260°F (127°C) are possible.

Compressed air is supplied to a vortex tube and passes through nozzles that are tangent to an internal counterbore. As the air passes through it is set into a spiraling vortex motion at up to 1,000,000 rpm. The spinning stream of air flows down the hot tube in the form of a spinning shell, like a tornado (in red). The control valve at the end allows some of the warmed air to escape and what does not escape reverses direction and heads back down the tube as a second vortex (in blue) inside of the low-pressure area of the larger warm air vortex. The inner vortex loses heat and exits through the other end of as cold air.

It is thought that both the hot and cold air streams rotate in the same direction at the same angular velocity, even though they are traveling in opposite directions. A particle of air in the inner stream completes one rotation in the same time of an air particle in the outer stream. The principle of conservation of angular momentum would say that the rotational speed of the inner vortex should increase because the angular momentum of a rotating particle (L) is equal to the radius of rotation (r) times it’s mass (m) times its velocity (v).  L = r•m•v.  When an air particle moves from the outer stream to the inner stream, both its radius (r) and velocity (v) decrease, resulting in a lower angular momentum. To maintain an energy balance for the system, the energy that is lost from the inner stream is taken in by the outer stream as heat. Therefore, the outer vortex becomes warm and the inner vortex is cooled.

At EXAIR, we have harnessed the cooling power of the vortex tube, and it can be found and utilized in such products as Spot CoolersCabinet Coolers, and Vortex Tubes themselves. If you have questions about Vortex Tubes, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF