Cabinet Coolers 101

We here at EXAIR always know when summer is approaching, as phone calls and orders for the Cabinet Cooler Systems start to kick into high gear.  After those first few hot days in late spring, it is common for panels and electrical enclosures to overheat due to faulty air conditioning units, fans that are not working, or lack of a cooling system in general.

Time for us to sharpen our pencils and be ready to help! Our Cabinet Coolers are in stock and ready to solve your overheating problems with same day shipping on orders we receive by 3pm. If you need assistance choosing your Cabinet Cooler Solution, Contact an Application Engineer today!

The Cabinet Cooler System is a low cost, reliable way to cool and purge electronic control panels.  We recently hosted a Webinar on the systems, and it is available for review (click picture below)  webinar-on-demand

EXAIR Cabinet Coolers incorporate the vortex tube technology to produce cold air from compressed air, all with no moving parts.

Below shows the basics of how the Cabinet Cooler is able to provide cooling to an enclosure.  Compressed air enters the vortex tube based system, and (2) streams of air are created, one hot and one cold. The hot air is muffled and exhausted through the vortex tube exhaust.  The cold air is discharged into the cabinet through the Cold Air Distribution Kit and routed throughout the enclosure. The cold air absorbs heat from the cabinet, and the hotter air rises to the top of the cabinet where it exits to atmosphere under a slight pressure. Only the cool, clean, dry air enters the cabinet – no dirty, hot humid outside air is ever allowed into the cabinet!

HowCCWorks
How the EXAIR Cabinet Cooler System Works

EXAIR offers Cabinet Cooler Systems for cabinets and enclosures to maintain a NEMA rating of NEMA 12 (dust tight, oil-tight), NEMA 4 (dust tight, oil-tight, splash resistant, indoor/outdoor service) and NEMA 4X (same as NEMA 4, but constructed of stainless steel for food service and corrosive environments.

Cabinet Cooler Systems can be configured to run in a Continuous Operation or with Thermostat control. Thermostat control is the most efficient way to operate a Cabinet Cooler.  They save air by activating the cooler only when the internal temperature reaches the preset level, and are the best option when fluctuating heat loads are caused by environmental or seasonal changes. The thermostat is preset at 95°F (35°C) and is easily adjusted.

Another option is the ETC Electronic Temperature Control, a digital temperature control unit for precise setting and monitoring of enclosure conditions. An LED readout displays the internal temperature, and the use of quick response thermocouple provides real time, accurate measurements. The controller has easy to use buttons to raise or lower the desired cabinet temperature set-point.

48xx-ETC120
EXAIR NEMA 4X 316SS Cabinet Cooler System with Electronic Temperature Control installed on control panel in a pharmaceutical plant.

 

Other Special Cabinet Cooler considerations are:

  • High Temperature –  for ambient temperatures of 125°F to 200 °F – for use near furnaces, ovens, etc.
  • Non-Hazardous Purge – ideal for dirty areas where contaminants might normally pass through small holes or conduits. A small amount of air (1 SCFM) is passed through the cooler when the solenoid is in the closed position, providing a slight positive pressure within the cabinet.
  • Type 316 Stainless Steel – suitable for food service, pharmaceutical, and harsh and corrosive environments.

If you have any questions about Cabinet Coolers or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Cabinet Cooler Side Mount Kits Solve the Limited Space Problem

Last week I wrote about the Thermostat Options for Smart Cooling utilizing the EXAIR Cabinet Cooler Systems.  You can see read that blog post here.  Today we will touch base on the Side Mount Kits as an option to expand the flexibility for the installation and operation.

Sometimes there isn’t room above an electrical panel to fit the Cabinet Cooler, even though it takes just 5″ to 7.25″ of space above. In these cases, the Side Mount Kit is available to handle any of the Cabinet Cooler sizes and NEMA ratings. EXAIR offers (6) models of Side Mount Kits –

  • Model 4909 – For NEMA 12 Cabinet Coolers up to 550 BTU.hr (139 Kcal/hr), Aluminum construction
  • Model 4910 – For NEMA 12 Cabinet Coolers , 650 BTU//hr (165 Kcal/hr) and higher, Aluminum construction
  • Model 4906 – For NEMA 4 and 4X Cabinet Coolers up to 550 BTU/hr (139 Kcal/hr), Type 303 Stainless Steel
  • Model 4907 – For NEMA 4 and 4X Cabinet Coolers, 650 BTU/hr (165 Kcal/hr) and higher, Type 303 Stainless Steel
  • Model 4906-316 – For NEMA 4 and 4X Cabinet Coolers up to 550 BTU/hr (139 Kcal/hr), Type 316 Stainless Steel
  • Model 4907-316 – For NEMA 4 and 4X Cabinet Coolers, 650 BTU/hr (165 Kcal/hr) and higher, Type 316 Stainless Steel

side_mounts_new

The NEMA 4 and 4X Cabinet Coolers must be mounted vertically for the unit to properly resist the ingress of liquids and maintain the integrity of the cabinet NEMA rating.

The Side Mount Kits install into a standard electrical knockout (1-1/2 NPS) for easy installation.

If you have any questions about the Side Mount Kits, Cabinet Coolers and/or Thermostat Options or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Smart Cooling – Cabinet Cooler Thermostat Options

If you watched the Webinar we hosted recently (if not, Watch It here) then you know that the EXAIR Cabinet Cooler System is an intelligent solution for electrical enclosure cooling.  The use of a Thermostat Control system is a key component to a system that provides the needed cooling while keeping compressed air usage to a minimum. There are several choices available, and I will cover those for you today.

The thermostat control systems are the most effective way to operate a Cabinet Cooler. They work by activating the the cooler only when the internal temperature of the enclosure reaches a preset, critical level. Thermostat controlled cooler systems are the best option when a cabinet will experience fluctuating heat loads, caused by operational, environmental, and seasonal changes.

Cabinet Cooler Systems that are ordered from the factory with thermostat control include a solenoid valve and thermostat.  The solenoid valve is available in 110-120VAC, 50/60 Hz, 240VAC, 50/60 Hz, and 24VDC and is UL Listed and CE and RoHS compliant. The thermostat is rated for 24V-240V AC or DC, 50/60 Hz and is UL Recognized and CSA Certified.

Solenoids
Solenoid Valves – 24 VDC, 110 VAC, and 240 VAC Available

 

The thermostat is factory set at 95°F (35°C). It will typically hold an internal cabinet temperature to +/- 2°F (1°C). The thermostat can be adjusted up or down if a different internal temperature is desired by turning the slotted temperature adjusting sleeve, with a 1/16 turn being approximately a 5°F change.

9017_thermoPRINT
Thermostat

 

The solenoid and thermostat components are rated to match and maintain the Cabinet Cooler System and cabinet NEMA rating, and can be NEMA 12, NEMA 4 or NEMA 4X. A Thermostat Control can be added to an existing Continuous Operation Cabinet Cooler System, please consult the factory for help in selecting the right kit.

4825SS
NEMA Type 4X Cabinet Cooler System, which includes the Solenoid Valve and Thermostat

If you have any questions about the Cabinet Coolers and Thermostat Options or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

NEMA Ratings and Enclosure Locations

Any realtor will tell you that the three most important factors in selecting a property are location, location, and location. This simply means that houses with similar features – number of bedrooms, yard size, structure, garage (or not,) basement or not,) etc. – can be found in a lot of very different neighborhoods. Whether you want to live somewhere that’s convenient to the highway, close to (or not so close to) work, near your favorite activities, etc., odds are you can find a house that meets your material needs & wants within those geographical confines. Hence, location is your #1 consideration. And your #2 and your #3 as well…my lovely bride is a real estate professional, so I have this on good authority. And, so you know, #4 is price, and #5 is condition.

Electrical and electronics controls professionals will tell you that three of the most important things to protect their equipment from are heat, moisture, and dust. If you’re looking for a durable, reliable, and low cost method for that, we’ve got the solution: the EXAIR Cabinet Cooler System. Selection of the right system comes down to determining your heat load, and…the reason for today’s blog…the LOCATION in which it will be installed.

Let’s say it’s a control panel for one of the machines on a factory production line…indoors & dry.  Our NEMA 12 Cabinet Cooler Systems provide protection against dust and oil from entering the enclosure.

NEMA 12 Cabinet Cooler Systems are oil tight, dust tight, and rated for indoor duty. They can also be installed to the wall of an enclosure (instead of the top) with a Side Mount Kit.

If the enclosure is outdoors, or indoors but subject to water spray (like in a wash-down area,) our NEMA 4 Cabinet Cooler Systems are oil tight, dust tight, AND splash resistant.  They ensure the inside of the enclosure stays dry through the use of a low pressure relief valve that seals when the cooler is not operating, maintaining NEMA 4 integrity at all times.

EXAIR NEMA Cabinet Cooler Systems provide additional protection to keep the enclosure dry inside.

Our NEMA 4X Cabinet Cooler Systems are made of stainless steel, and are commonly specified for food service area installations, and in corrosive environments.  They’re also oil tight, dust tight, and splash resistant.  These are also available in Type 316 Stainless Steel construction, for especially harsh conditions, or when this is otherwise specified due to the nature of the installation, such as critical food grade or pharmaceutical areas.

EXAIR NEMA 4X Cabinet Cooler Systems are made of corrosion resistant stainless steel for corrosive environments, and are also available with Side Mount Kits.

Regardless of the NEMA rating called for by the location, all EXAIR Cabinet Cooler Systems are available with a Non-Hazardous Purge option, which provides a slight positive pressure through a low (1 SCFM) air flow when internal temperature is below the thermostat setpoint and the solenoid valve is closed.  This provides constant and reliable protection, even if the enclosure is not perfectly sealed, even in especially dirty or dusty environments.

All EXAIR Cabinet Cooler Systems are available with Non Hazardous Purge for constant, reliable protection from environmental contaminants.

High Temperature Cabinet Cooler Systems are also available when ambient temperatures can exceed 125F.  These are popular in foundries, glass production facilities, and even non-air conditioned spaces in particularly warm climates.

High Temperature Cabinet Cooler Systems provide reliable heat protection in areas where ambient temperatures reach 125-200F (52-93C)

If you’ve got sensitive, mission-critical electrical or electronic enclosures that need reliable heat protection, EXAIR has the solution you’re looking for.  If you know the required cooling capacity for your enclosure, you can select the right system directly from our website.  If you’d like help in calculating your heat load, you can use our Cabinet Cooler System Sizing Guide…just fill in the blanks and click “submit” – your request will be forwarded to an Application Engineer for immediate attention.  Or, if you’d rather, just give me a call.  We calculate heat loads over the phone all the time; it only takes a minute.

Coast to Coast and Beyond

Recently, I was working with  a customer looking for a Premium Reversible Drum Vac and wanted it shipped to the Northwest Territories of Canada –  which we could do!  It got me to thinking, what are the farthest US state and territory locations EXAIR has shipped to in the North, South, West and East directions.  I ‘scoured’ the records and came up with these.

Furthest North- We have shipped to Prudhoe Bay, Alaska.  Most recently, believe it or not, we shipped a NEMA 4X Cabinet Cooler to an Oil and Natural Gas Exploration Company.  Goes to show that even the coldest environments still have the need to provide cool, clean, dry air to cool and protect electronics in electrical enclosures.

Furthest South – We have shipped to the US Territory of Puerto Rico, city of Santa Isabel.  An Aerospace company needed a strong, laminar blast of air and utilized a 6″ Stainless Steel Air Knife.  An Air Knife offers a quiet, efficient way to clean, dry or cool parts, webs, or conveyors.

Furthest West- We have shipped to the US Territory of Guam.  The local University ordered a model 1111-4 Super Air Nozzle Cluster, for a good strong blast of air flow for a cleaning operation.  The model 1111-4 delivers 3.2 lbs of force, at just 82 dBA of sound. A safe and efficient nozzle for blowoff operations.

Furthest East- We have shipped to Eastport, Maine.  The customer in Eastport ordered a Line Vac and a section of Conveyance Hose.  The Line Vac is a great tool for conveying large volumes of material over long distances, through a standard hose or tube.  The compact design features large throat diameters for maximum throughput capability.

 

It was interesting to look back and see all the places that EXAIR has shipped.  We have customers from all over the globe. If you are outside the of 50 US States and Canada, we have a dedicated team of International Application Engineers that will work with you to select the best EXAIR product for your process and application, and direct you to your local International Distributor.

If you would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Not a Fan of Fans Because Rising Air Temp Will Kill Your Electronics

Using a fan is a popular method for machine builders to provide cooling for an electrical enclosure.  The electrical panel stays cool for machine acceptance at the factory, and possibly for even the first 6-8 months of operation and then one day, there is a problem, and the machine shuts down due to an over heated component within the panel. This leads to opening up the panel, possibly placing an external fan, and operation of the machine in an unsafe condition, to meet the daily production needs.  What has led to this situation?  Summertime!

To better understand the situation, let’s review the heat formula.  The total heat content of air consists of the sensible and latent heat factors. Latent heat is the heat that is required to change the state of a material, say from liquid to solid.  Water to ice is an easy way to understand this type of heat.  When heat is removed from water at 32°F it turns to ice at 32°F.  There is no temperature change, but heat has been removed. Sensible heat is dry heat, it is a result in change of temperature, but not change in state or moisture.  For fan cooling, the air and moisture only change temperature and not state, we can focus on the sensible heat portion.

In English units:  Q = Cp x ρ x q x ΔT x 60 min/hr

And for air:

Q –  is the sensible heat flow in BTU/hr

Cp – is the specific heat in BTU/lb °F – 0.2388 BTU/lb °F

ρ – is the air density at standard conditions – 0.075 lb/ft3

q – is measured air flow in ft3/min – CFM

ΔT – is the temperature difference in °F – Final Air Temperature – Starting Air Temperature

Plugging in the constant values, gives us:

Q = 1.0746 x CFM x ΔT

It is common to chart the above formula for various ΔT values, plotting Q vs. CFM values on a dual logarithmic scale, as shown below-

BTU-CFMGraph4

As an example, for an internal heat load of 1300 BTU/hr, to ensure that the temperature rise (from ambient) in the cabinet does not exceed 20°F, 60.5 CFM of air flow is required (the red line above).  A fan with this CFM rating is specified and installed in the panel.

This works  when the ambient temperature is a comfortable 75°F, in a climate controlled factory, or the cooler months of the year.  The problem occurs when the ambient temperature increases to 95°, 100°, or even 105°F,  not uncommon in the summer, and in plants that create large amount of heat, like metal production, and near boiler systems and furnaces.  Under these conditions, the fan will still maintain the 20°F difference, but the internal temperature of the cabinet will rise to 115°-125°F, temperatures where electrical components start to fail or shut down.  The solution to this issue?  Lower the Starting Air Temperature.

The EXAIR Cabinet Cooler Systems use our Vortex Tube technology to take compressed air and provide a cold flow of air that enters the enclosure at 5o°F less than the compressed air temperature.  With a compressed air temperature of 70°F, common for industrial compressed air systems, the Cabinet Cooler will deliver cold air at 20°F.  Again using the chart above, flowing just 20 SCFM of this air will absorb the 1300 BTU/hr of heat (the green line), and result in an internal air temperature 80°F no matter the ambient air temperature.  The electronics in this enclosure will run trouble free, for a long time. This ambient air temperature problem is also true of air-to-air heat exchangers, as the ambient air temperature rises the ability to remove heat diminishes.

Another consideration, the fan system is bringing in air from the surroundings, which is hot and dirty, passing it through a filter (which gets clogged, reduces air flow, and needs to be replaced.) The Cabinet Cooler System, includes an automatic drain filter separator, which filters the compressed air to be free of dirt, dust and moisture. The air entering the enclosure is cool, dry and fee of dust and debris.

ETC CC
NEMA 4 Cabinet Cooler System with Optional Electronic Temperature Control

To discuss your application and how the EXAIR Cabinet Cooler System can be a benefit at your facility, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

 

A 20 Year Old Cabinet Cooler Reveals our Small World

Recently, I had dinner with some family that I hadn’t seen in a quite a while.  As part of catching up and reminiscing about old times, the discussion went to professions and ‘what are you doing now?’  I told my uncle that I was doing Application Engineering for EXAIR Corporation, and he asked about what we do. I responded that we manufacture an extensive array of Intelligent Compressed Air Products, and then gave a few specifics, like Air Knives, Line Vacs, and Cabinet Cooler Systems. Since my uncle had worked in the chemical process and research industry for many years, he was at least familiar with the products I had mentioned.  He then shared stories about the facility he works at, and because I had worked there many years ago in college (driving a forklift), he knew I would appreciate hearing about all the changes in the last quarter decade.  Eventually, the evening came to and end and we went our separate ways.

Very soon after I received a text message with the below photo attached. Sure enough, my uncle had come across an EXAIR Cabinet Cooler System installed in his facility.  Based on the photo, I identified it as a NEMA 12 model, with a cooling capacity of 275 or 550 BTU/hr. When I did an order history search, I confirmed it was a model 4208 (550 BTU/hr) and found it had shipped in August of 1995, and that my uncle’s name was listed as the order contact, since he placed the order.

Small World!

img_6375
Model 4208, NEMA 12 Cabinet Cooler System, Installed in 1995 – Still Working Today

Speaking of small worlds, the model 4208 and it’s little brother model 4204, are perfect for small cabinet enclosures that have a minor amounts of internal heat generation, such as a power supply, or moderate outside heat transfer.  Capable of producing 550 BTU/hr and 275 BTU/hr of cooling while using just 8 and 4 SCFM of 100 PSIG compressed air, the EXAIR Cabinet Cooler Systems offer a great way to keep cabinets cool and worry free, as evidenced by over 20 years of operation.  Just provide clean air (a simple 5 micron water/dirt filter is recommended) and it will operate worry free for a long time.

EXAIR manufactures Cabinet Cooler Systems from 275 to 5600 BTU/hr, for NEMA 12, NEMA 4 and NEMA 4X enclosures. They are available in Continuous Operation, (2) Types of Thermostat Control, special designs for High Temperature environments, and a Non- Hazardous Purge. Materials of construction include aluminum, stainless steel, and type 316 stainless steel.

To discuss your application and how an EXAIR Cabinet Cooler System would help out, feel free to contact EXAIR and one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB