Engineered Super Air Nozzles Improve Efficiency and Safety vs. Commercial and Homemade Nozzles

They may be inefficient, but they sure are loud…

Over the years, EXAIR has come across a variety of different types of blow-off devices.  We have seen copper tubes, pipes with a crushed end, fittings with holes drilled into them, and modular flex lines.  For compressed air use, these are very dangerous and very inefficient.  In many instances, companies will go through a mixed bag of items to make a blow-off device for their application.  It is inexpensive to do.  But what they do not realized is that these items are very unsafe and will waste your compressed air, costing you much money in the long run.

When EXAIR started to manufacture compressed air products in 1983, we created a culture in making high quality products that are safe, effective, and efficient.  Since we stand by our products, we created a program called the Efficiency Lab.  We test blow-off devices against EXAIR products in noise levels, flow usage, and force measurements.  With calibrated test equipment, we compare the data in a detailed report for the customer to review.  If we are less effective, we will state that in the report, but this is very rare.  With this quantified information, we can then determine the total amount of air savings and safety improvements that EXAIR products can offer.

With our Efficiency Lab, it is quite simple to do.  For starters, you can go to our Product Efficiency Survey on our website to give the conditions for testing.  If you wish for a side by side analysis, you can place your pneumatic device in a box and send it to EXAIR.  We will run the tests at the specified conditions or in a range of settings.  We will then return your pneumatic device back to you with a report of the comparison.  This report can be used to show managers, executives, HSE, etc. on the improvements that EXAIR can provide in cost savings and safety.

In a recent Efficiency Lab, a customer sent us a water jet nozzle that he was using to blow off product passing on a conveyor (reference photo above).  The customer supplied us with the required information to test.  They had three water jet nozzles on a manifold that had ¼” NPT male connections.  The air pressure was set at 75 PSIG (5.2 bar), and the air pattern was round.  Their annual usage for this blow-off device was 7000 hours continuous, and their electric rate for their facility was $0.10/KWh.  The reason that they sent their nozzle to EXAIR was because the operation was very loud, and they believed that they were wasting compressed air.  They asked me for a recommendation and what the payback period might be with my selection.

Model 1101

I recommended the model 1101 Super Air Nozzle as our standard round pattern with a ¼” NPT male connection.  With our engineered design, the Super Air Nozzle can entrain the “free” ambient air into the air stream to generate a hard-hitting force; using less compressed air.  Also, with this suggestion, they will not have to redesign their blow-off station; just remove the water jet nozzles and replace them with the Super Air Nozzles.  We tested the water jet nozzle, and we found that it used 17.5 SCFM (496 SLPM) at 75 PSIG (5.2 bar).  The noise level was measured at 91.2 dBA for a single nozzle.  As a comparison, the model 1101 Super Air Nozzle will only use 13.3 SCFM (376 SLPM) of compressed air at 75 PSIG (5.2 bar); and, the noise level was reduced to 73 dBA for each nozzle.

The first thing that is important to me is safety.  High noise levels will cause hearing damage.  OSHA generated a standard 29CFR-1910.95a with a chart for Maximum Allowable Noise Exposure.  To calculate the noise level for three nozzles, I will reference a previous blog that I wrote: “Measuring and Adding Sounds”.  With three water jet nozzles, the total sound is 96 dBA.  From the OSHA table above, the usage without hearing protection is less than 4 hours a day.  With the Super Air Nozzles, the noise level will be 78 dBA for all three nozzles; well below the requirement for 8 hours of exposure.  It is difficult to put a monetary value on safety, but using PPE should never be the first step as a solution.

For the annual savings and the payback period, I will only look at the electrical cost.  (Since the Super Air Nozzle is using less compressed air, the maintenance and wear on your air compressor is reduced as well).

The air savings is calculated from the comparison; 17.5 SCFM – 13.3 SCFM = 4.2 SCFM per nozzle.  With three nozzles, the total compressed air savings will be 12.6 SCFM for the blow-off station.  An air compressor can produce 5.36 SCFM/KW of electricity at a cost of $0.10/KWh.  For an annual savings, we have the figures from the information above; 7000 hours/year * 12.6 SCFM * $0.10/KWh * 1KW/5.36 SCFM = $1,645.52/year.  For the payback period, the model 1101 Super Air Nozzle has a catalog price of $44.00 each, or $132.00 for three.  The customer above did not disclose the cost of the water jet nozzles, but even at a zero value, the payback period will be just under 1 month.  Wow!

Not all blow off devices are the same.  With the customer above, they were able to reduce their noise levels and compressed air consumption.  If your company decides to select an unconventional way to blow off parts without contacting EXAIR, there can be many hidden pitfalls; especially with safety.  Besides, if you can save your company thousands of dollars per year as well, why go with a non-standard nozzle?  If you have a blow off application and would like to compare it against an EXAIR product, you can discuss the details with an Application Engineer.  What do you have to lose?

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

EXAIR Digital Sound Level Meters Measure Noise Exposure Levels

slm-newlabel
Digital Sound Meter

EXAIR offers the model 9104 Digital Sound Level Meter.  It is an easy to use instrument for measuring and monitoring the sound level pressures in and around equipment and other manufacturing processes.

Sound meters convert the movement of a thin membrane due to the pressure waves of sound into an electric signal that is processed and turned into a readable output, typically in dBA.  The dBA scale is the weighted scale that most closely matches the human ear in terms of the sounds and frequencies that can be detected.

Noise induced hearing loss can be a significant problem for many workers in manufacturing and mining. To protect workers in the workplace from suffering hearing loss OSHA has set limits to the time of exposure based on the sound level.  The information in the OSHA Standard 29 CFR – 1910.95(a) is summarized below.

OSHA Noise Level

The EXAIR Digital Sound Level Meter is an accurate and responsive instrument that measures the decibel level of the sound and displays the result on the large optionally back-lit LCD display. There is an “F/S” option to provide measurement in either ‘slow’ or ‘fast’ modes for stable or quickly varying noises. The ‘Max Hold’ function will capture and hold the maximum sound level, and update if a louder sound occurs.

Certification of accuracy and calibration traceable to NIST (National Institute of Standards and Technology) is included.

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Durable, Versatile, and Efficient – EXAIR Soft Grip Safety Air Gun

As compressed air technology advanced through the 20th Century, its uses multiplied.  Pneumatic cylinders became common for rolling and forming presses.  The convenience and portability of powerful pneumatic hand held tools spread in assembly and manufacturing facilities.  Along the way, operators also found that an open-ended compressed air line could be used for quick and easy blow off in a number of applications. There were, however, some pretty risky safety issues associated with this.

In December of 1970, the Occupational Safety & Health Act became the law of the land, and in 1971, the Occupational Safety & Health Administration (OSHA) was created.  Among the many hazards in workplaces they targeted was compressed air use for cleaning.  The primary concerns were:

  • An open ended blow off could inadvertently be dead ended onto a person’s body, and if the pressure were high enough, it could break the skin and cause a deadly condition called an air embolism.  So they limited the outlet pressure to 30psi.
  • Blowing something off with air can (and usually does) result in airborne particulate traveling at a high velocity that can imbed in your skin or in your eye.  So they mandated the use of proper chip guarding, protective clothing, and eye protection.

This is where the history of the safety air gun begins.  Through the 1970’s & 1980’s, engineers rolled out product after product conforming with these new safety standards, sometimes looking for economy, sometimes efficiency…and occasionally, both.

It’s not hard to make a blow off nozzle that complies with OSHA’s dead end pressure requirement; you just need to provide a path for the air to escape in case the nozzle end is blocked.  Cross drilled nozzles (shown at right) are simple, cheap, and OSHA compliant, but they’re also loud & inefficient.

EXAIR’s Super Air Nozzles not only protect against injury from dead ended high pressure air, their engineered design also makes them quiet, and efficient.  They are commonly installed on the Soft Grip Safety Air Gun.  Along with our Chip Shields (shown at right) and your personal protective equipment, you get OSHA compliance, AND lower air consumption & noise levels.

With the Soft Grip Safety Air Gun, you also get a diverse range of options to suit the specific needs of numerous applications:

If you’re looking for a hand held blow off device, your choices are many.  If you’re looking for a quiet, efficient, safe, and versatile one, your choice is easy:  the EXAIR Soft Grip Safety Air GunCall me and we’ll figure out which one you need.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Measuring and Adding Sound Levels

Noise-induced hearing loss, or NIHL, is one of the most common occupational diseases. This doesn’t occur overnight, but the effects are noticed gradually over many years of unprotected exposure to high sound levels. This is 100% preventable! Through proper engineering controls and personal protective equipment (PPE), NIHL can be prevented. It is irreversible, so once the damage is done there’s no going back. OSHA standard 19 CFR 1910.95(a) states that protection against the effects of noise exposure shall be provided when the sound levels and exposure time exceed those shown in the table below.

OSHA Chart

Intensity of the sound pressure level is expressed in decibels (dB). The scale is logarithmic, a 3 dB reduction cuts the sound level in half. A 10 dB reduction decreases it by a factor of 10, and a 20 dB reduction decreases the sound level by a factor of 100. To calculate the dB level, we use the following formula:

Sound SPL

Where:

L – Sound Pressure Level, dB

P – Sound Pressure, Pa

Pref – reference sound pressure, 0.00002 Pa

For example, normal conversation has a Sound Pressure of .01Pa. To calculate the dB level:

dB = 20 log10 (.01Pa/.00002Pa)

 = 54 dB

When designing a new blowoff process, it’s important to consider the sound levels produced before implementation. EXAIR publishes the sound level for all of our products for this very reason. If you’re implementing multiple nozzles, you’ll need to add the sound levels together. To do so, we use the following formula:

Sound Addition

Where:

L1, L2… represent the sound pressure level in dB for each source

A customer was using ¼” open ended copper tubes for a blowoff application removing trim after a stamping operation. They had a total of (4) tubes operating at 80 PSIG. Not only were they VERY inefficient, but the sound level produced at this pressure was 94 dBA. To calculate the sound level of all (4) together we use the above formula:

L = 10 x log10(109.4+ 109.4 + 109.4 + 109.4)

L = 100 dB

At this sound level, permanent hearing loss begins to occur in just two hours of unprotected exposure. We recommended replacing the loud and inefficient copper pipe with our 1” Flat Super Air Nozzle, Model 1126. At 80 PSIG, the 1126 produces a sound level of just 75 dBA.

L = 10 x log10 (107.5 + 107.5 + 107.5 + 107.5)

L = 81 dB

At almost a 20 dB reduction, that’s nearly 100x quieter! Don’t rely on just PPE to keep your operators safe from NIHL. Replacing loud inefficient blowoff methods with EXAIR’s Intelligent Compressed Air Products will take it one step further in ensuring your creating a safe working environment for your employees.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

What’s So Great About The VariBlast Compact Safety Air Gun?

Well, for one thing, it’s won ANOTHER award…in addition to the 2018 Plant Engineering Product of the Year (Silver Award, Compressed Air Category) for 2018, it’s now won the 2019 Industrial Safety & Hygiene Reader’s Choice Award.

But we didn’t need awards to tell us how great they are.  EXAIR Corporation has 35 years of continuously improving experience in the design, engineering, and manufacture of quiet, safe, and efficient compressed air products for industry.  The VariBlast Compact Safety Air Guns are just another innovation that’s come to fruition, courtesy of the knowledge, experience, and dedication to quality from our R&D Engineering & Production departments.

Whatever your needs are, EXAIR has a Safety Air Gun for you.

But you don’t have to take OUR word for it: a satisfied customer base has proven the VariBlast Compact Safety Air Gun‘s success:  We offer a 30 Day Unconditional Guarantee on any catalog product.  That means you can put it through its paces for up to a month…if it’s not going to work out, for any reason, we’ll arrange return for full credit.  Of the dozens of VariBlast Safety Air Guns we’ve sold every month for the last two years or so, we have not had one returned.  Not. One.  To which I say: no wonder…check it out:

If you’re looking for an economical, efficient, quiet, variable flow, handheld blow off solution, look no further than the VariBlast Compact Safety Air Gun…just another award winning Intelligent Compressed Air Product, brought to you by EXAIR.  To the readers of Industrial Safety & Hygiene Magazine…thanks for noticing!

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR Intelligent Compressed Air Products: Leading the Way in Standards Compliance

EXAIR prides itself in offering products with high-performance and peak efficiency. All EXAIR products are manufactured to meet the strict requirements of a variety of different standards, ensuring that you receive a reliable, high quality product that WILL perform to the specifications we publish.

Safety is a top priority for most companies, EXAIR’s line of Intelligent Compressed Air Products meet or exceed the strict safety standards set forth by both OSHA and the European Union. EXAIR products comply with OSHA 29 CFR 1910.242(b), the standard implemented to ensure safe operation of compressed air blowoff devices, and the EU General Product Safety Directive (2001/95/EC).

sag-osha-compliant
The engineered design of our Super Air Nozzles prevents compressed air from penetrating the skin by eliminating the potential of dead-ending when pressed against the skin.

OSHA Chart

Additionally, they comply with the noise limitation requirements set forth under 29 CFR 1910.95(a) and the EU Machinery Directive (2006/42/EC). From the Optimization product line, EXAIR’s Electronic Flow Control and the Electronic Temperature Control meet the low voltage standards of EU Low Voltage Directive (2006/95/EC). A CE label is placed on all products that comply with applicable directives.

UL

UL, or Underwriters Laboratories, is a third-party safety and consulting organization that certifies products after thorough testing and evaluation. EXAIR’s Cabinet Coolers are UL Listed to US and Canadian safety standards. Static Eliminators are also UL Component Recognized. Within our line of Cabinet Coolers is the Hazardous Location Cabinet Cooler, bearing the Classified UL mark for use in classified areas.

ROHS_Vector

In the assembly of electrical products there can be hazardous materials used during production. The Restriction of Hazardous Substances, also known as RoHS or (2002/95/EC), restricts the use of materials such as: lead (Pb), mercury (Hg), cadmium (Cd), hexavalent chromium (CrVI), polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE), and four different phthalates. The electrical portions of EXAIR’s Static Eliminators, Electronic Flow Control, Electronic Temperature Control, Digital Flowmeter, solenoid valves, and thermostats all comply with the amendment outlined in the European Commission decision L 214/65.

In addition to RoHS, EXAIR is also committed to providing products that are conflict mineral free. In support ofconflictfree_v2 Section 1502 of the Dodd-Frank Wall Street Reform and Consumer protection Act, EXAIR complies with the conflict minerals rule to curb illicit trade of tin, tantalum, tungsten and gold in the DRC region. Using the CMRT 4.20 template, we’re able to document our supply chain to ensure our materials are not being sourced from places that could finance conflict in the DRC and surrounding countries.

reachFinally, per Regulation (EC) No 1907/2006 Title I, Article 3, paragraph 3, the European Union enacted legislation requiring substances and chemicals imported into the EU to be registered to ensure a high level of protection for human health and the environment. Per Title II, Article 7, paragraph 1, articles must be registered when a substance is intended to be released during normal conditions of use that would exceed 1 metric ton per producer per year. Since EXAIR products do not contain substances that are intentionally released, registration is not required.

If you’re looking to maintain compliance in your industry, EXAIR products have you covered. If you have any questions about these standards of compliance feel free to reach out to us. Our team of Application Engineers have years of experience in industry are waiting to take your call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Flat Super Air Nozzles by EXAIR: A Wide-Range of Customizable Solutions

EXAIR’s Flat Super Air Nozzles have been blowing away the competition since 2003.

EXAIR’s line of 1” and 2” Flat Super Air Nozzles are rugged, efficient, and ideal for applications that require a wide forceful stream of airflow. The patented design utilizes a special shim to maintain the critical position of the component parts. The result is a laminar, high velocity blast of air with minimum air consumption and sound level.

The Flat Super Air Nozzles are available in a wide range of configurations. With both the 1” and 2” sizes you have the ability to select either Zinc Aluminum alloy or Type 316 Stainless Steel for higher temperature or corrosive applications. They’re also available installed at the end of our Safety Air Guns. The 1” Flat Super Air Nozzles are ideal for our VariBlast Compact Safety Air Gun while the 2” is suitable on either our Soft Grip Safety Air Gun or the Heavy Duty Safety Air Gun.

With extensions ranging from 6”-72” and Chip Shields also available, you have the ability to tailor a blowoff gun to your exact application. Since the design of the nozzle prevents any chance for it to be dead-ended, all configurations will be compliant with OSHA directive 29 CFR 1910.242(b). This means you’re able to operate at pressures in excess of 30 PSIG without risking harm to your operators.

In addition to two different sizes and materials, there’s also a wide range of shims that can be installed. Just like the Super Air Knife, the thickness of the shim installed (in addition to the input compressed air pressure) will dictate the force and flow through the nozzle. For both the 1” and 2” Flat Super Air Nozzles, shim thicknesses are available ranging from .005”-.030”. Thicker shims will increase the force and flow, thinner shims will reduce it while also reducing the air consumption. To allow you to experiment with different flows, we make shim sets available that’ll allow you to test out a few different sizes in order to determine the best solution for your application.

New to EXAIR in 2018, the Model 1144 2” Super Air Scraper is a patent pending nozzle used to remove stuck-on debris from work or machine surfaces. It incorporates a strong corrosion resistant scraper blade to add necessary leverage to allow you to get underneath and scrape away debris. The strong airflow from the 2” Flat Super Air Nozzle then is able to get underneath and blow away the material. The scraper nozzle is great for applications involving the removal of tape from floors, gaskets, adhesive, labels and stickers, grease, paint and sealant. It’s also available on the end of our Soft Grip Safety Air Gun with durable ¾” air extensions in lengths ranging from 6”-72” and Chip Shields. All of these possibilities are available from stock with same day shipments.

scraper SAG
Soft Grip Super Air Scraper

EXAIR’s wide-range of solutions allow you to customize the product to your exact specifications. Stop wasting time and money replacing cheap plastic air nozzles, get yourself a nozzle that’s Built to Last by EXAIR! 

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD