EXAIR Product Overview: Mufflers

Noise, we all hate it to some extent. From the hustle and bustle of crowed streets to the whine of a jet engine noise has plagued the world for eons leaving people to search for a way to escape into a moment of peace and quiet. The majority of people that I know pack their massive over sized backpacks and head deep into the mountains for days on end to escape the noise sometimes traveling for 10+ miles at a time. But how can we help eliminate this monstrosity that we have created in our manufacturing environments? The answer is mufflers, and no I don’t mean your car muffler (although they do the same thing) I mean compressed air mufflers. Compressed air can be a loud utility inside of a plant environment and exceed the OSHA guidelines for personnel noise exposure. But this noise can easily be mitigated with the use of Intelligent compressed air products and mufflers.

Big Sandy Lake Trail – Wind River Range State Park, WY

OSHA Standard 29 CFR 1910.95(a) outlines the total noise exposure to a particular noise level per day and dictates that noise exposure at or above 85 decibels require ear protection. By placing a muffler on the end of the pipe one can reduce the sound level significantly to the point it could be the difference between having to wear ear protection and not having to. With that being said EXAIR offers four different types of mufflers to choose from and they are Reclassifying, Sintered Bronze, Straight-Through, and Heavy Duty.

Reclassifying mufflers offer the best noise reduction at 35 dB and have the added benefit of removing oil mist from the air line. This means that the Reclassifying mufflers are ideal for pneumatic cylinders. Per OSHA Standard 29 CFR 1910.1000 worker shall not be exposed to more than 5mg/m3 of oil by volume in a 40-hour work week. The patented design of the removable element separates oil from the exhausted air and meets or exceeds the OSHA Standard.

Sintered Bronze Mufflers are an excellent low-cost solution which can be easily installed into your current existing ports. These mufflers also come in the largest variety of different sizes ranging from thread sizes of #10-32 to 1.5” NPT. Also, the Sintered Bronze Mufflers are specifically designed to provide the minimal amount of back pressure and restriction. The main difference between these mufflers and the reclassifying is that the Sintered Bronze Mufflers cannot collect oil out of the exhaust.

The quick pick chart for easily choosing which muffler you need

If the process air needs to be directly plumbed away from personnel, then the Straight-Through Muffler is the way to go. Straight-Through Mufflers are ideal for situations that require both a threaded inlet and exhaust. In most applications you will see the Straight-Through Muffler pair with our E-Vac vacuum generators or Vortex Tubes to provide noise reduction of the unit. All in all, the Straight-Through Muffler can reduce noise levels up to 20 dB.

Model 3913 Straight-Through Muffler

Lastly, the Heavy Duty Muffler provides a corrosion resistant aluminum outer shell with a stainless steel inner screen. This design allows the muffler to catch any contaminants such as rust from being ejected potentially causing harm or quality defects. Typically, this muffle will reduce noise levels up to 14 dB.

Model 3903 Heavy Duty Muffler

If you have any questions or want more information on EXAIR’s E-Vacs and their Accessories. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Two Important Safety Factors When Choosing Air Nozzles

At EXAIR, we have a statement, “Safety is everyone’s responsibility”.  And we also manufacture safe compressed air products.  In the United States, we have an organization called Occupational Safety and Health Administration, OSHA, that enforces directives for safe and healthy working environments.  They do training, outreach programs, and educational assistance for manufacturing plants.  They will also enforce these directives with heavy fines for violations.  The two most common violations with compressed air are air guns and blow-off devices are described in 29CFR 1910.242(b) for dead-end pressure/chip shielding and 29CFR 1910.65(a) for maximum allowable noise exposure.

Here is an example of a nozzle that is dangerous.  As you can see, there is only one opening where the air can come out from the nozzle.  Other types of nozzles that would fall into this same group would include copper tube, extensions, and open pipes.

Unsafe Nozzle

They are dangerous as the compressed air cannot escape if it is blocked with your body or skin.  If operated above 30 PSIG (2 bar), these nozzles could create an air embolism within the body which can cause bodily harm or death.  This is a hazard which can be avoided by using EXAIR Super Air Nozzles and Safety Air Guns.  The nozzles are designed with fins which allows the air to escape and not be blocked by your skin.  So, you can use the EXAIR Super Air Nozzles safely even above 30 PSIG (2 bar).

Unsafe Air Gun

To counteract the dead-end pressure violation, some nozzle manufacturers create a hole through the side of the nozzle (Reference photo above).  This will allow for the compressed air to escape, but, now the issue is noise level.  With an “open” hole in the nozzle, the compressed air is very turbulent and very loud.  The National Institute for Occupational Safety and Health, NIOSH, states that 70% to 80% of all hearing loss within a manufacturing plant is caused by compressed air.  OSHA created a chart to show the maximum allowable noise exposure.  This chart shows the time and noise limits before requiring hearing protection.  The EXAIR Super Air Nozzles, Super Air Knives, Super Air Amplifiers are designed to have laminar flow which is very quiet.  As an example, the model 1210 Safety Air Gun has a sound level of only 74 dBA; well under the noise exposure limit for 8 hours.

Hearing loss is the best known, but not the only, ill effect of harmful noise exposure. It can also cause physical and psychological stress, impair concentration, and contribute to workplace accidents or injuries.

NIOSH created an overview of how to handle hazards in the workplace.  They call it the Hierarchy of Controls to best protect workers from dangers.  The most effective way is by eliminating the hazard or substituting the hazard.  The least effective way is with Personal Protective Equipment, or PPE.  For unsafe compressed air nozzles and guns, the proper way to reduce this hazard is to substitute it with an engineered solution.

One of the last things that companies think about when purchasing compressed air products is safety.  Loud noises and dead-end pressure can be missed or forgotten.  To stop any future fines or additional personal protective equipment (PPE), it will be much cheaper to purchase an EXAIR product.  And with the Hazard Hierarchy of Controls, the first method is to remove any hazards.  The last method for control is to use PPE.  In the middle of the hierarchy is for an engineered solution.  EXAIR products are that engineered solution.  If you would like to improve the safety in your facility with your current blow-off devices, an Application Engineer can help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Picture:  Safety First by SuccoPixabay License

What is a Decibel Level?

Decibel level also known as dBA, is how the industry measures sound intensity’s effect on the human ear and is an important value when discussing noise exposure for employees and operators within manufacturing. Manufacturing personnel can be at risk for hearing damage when exposed to high decibel levels if the proper precautions are not taken. For reference, 0 dBA is the softest level that a person can hear. Normal speaking voices are around 65 dBA. A rock concert can be about 120 dBA.

Sounds that are 85 dBA or above can permanently damage your ears. The more sound pressure a sound has, the less time it takes to cause damage. This damage occurs within a sensitive part of our ear called the cochlea, which contain thousands of hair cells used to allow our brains to detect sounds. For example, a sound at 85 dBA may take as long at 8 hours to cause permanent damage, while a sound at 100 dBA can start damaging hair cells after only 30 minutes of listening.

OSHA Max Noise Exposure Chart

The Center for Disease Control (CDC) estimates that 22 million workers are exposed to potentially damaging noise at work each year. Whether you work near machinery, at a sports venue, on a tarmac, or operate a jackhammer—hearing loss is preventable.

Noise may be a problem in your workplace if you:

  • Hear ringing or humming in your ears when you leave work.
  • Have to shout to be heard by a coworker an arm’s length away.
  • Experience temporary hearing loss when leaving work.

If you need to raise your voice to speak to someone 3 feet away, noise levels might be over 85 decibels. Sound-measuring instruments are available to measure the noise levels in a workspace.

The first step to lowering your sound level is to take a baseline reading of your various processes and devices that are causing the noise. EXAIR’s Sound Level Meter, Model 9104, is an easy to use instrument that provides a digital readout of the sound level. They come with an NIST traceable calibration certificate and will allow you to determine what processes and areas are causing the most trouble.

From there, EXAIR has a wide range of Intelligent Compressed Air Products® that are designed to reduce compressed air consumption as well as sound levels. For noisy blowoffs where you’re currently using an open-ended pipe or a loud commercial air nozzle, EXAIR’s Super Air Nozzles are the ideal solution. Not only can they pay for themselves over a short period of time time due to compressed air savings, but your operators will thank you when they’re able to hear later on in life!

 EXAIR has the tools you need to reduce sound level in your processes. If you’d like to talk to an Application Engineer about any applications that you feel could benefit from a sound reduction, give us a call.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Keep Your Pneumatics “Healthy” and “Running Like a Brand New Car”

Compressed air systems are used in facilities to operate pneumatic systems, and these systems are vital for industries.  So, it is important to keep them running.  The system can be segregated into three different sections; the supply side, the demand side, and the distribution system.  I like to represent these sections as parts of a car.  The supply side will be the engine; the distribution system will be the transmission; and, the demand side will be the tires.  I will go through each section to help give tips on how to improve the “health” of your pneumatic system.

From the supply side, it will include the air compressor, after-cooler, dryer, and receiver tank that produce and treat the compressed air.  They are generally found in a compressor room somewhere in the corner of the plant.  The air compressor, like the engine of your car, produces the pneumatic power for your plant, and needs to have maintenance to keep it working optimally.  The oil needs to be changed, the filters have to be replaced, and maintenance checks have to be performed.  I wrote a blog that covers most of these items, “Compressed Air System Maintenance”.

To connect the supply side to the demand side, a distribution system is required.  Distribution systems are pipes which carry compressed air from the air compressor to the pneumatic devices.  Just like the transmission on the car, the power is transferred from the air compressor to your pneumatic products.

Maintenance is generally overlooked in this area.  Transmissions have oil which can be detected if it is leaking, but since air is a gas, it is hard to tell if you have leaks.  Energy is lost from your pneumatic “engine” for every leak that you have.  So, it is important to find and fix them.  A study was conducted within manufacturing plants about compressed air leaks.  They found that for plants without a leak detection program, up to 30% of their compressed air is lost due to leaks.  This will be equivalent to running on only 6 cylinders in a V-8 engine.

EXAIR offers the Ultrasonic Leak Detector to find those pesky leaks.  It makes the inaudible “hiss”; audible.  It can detect leaks as far as 20 feet (6m) away with the parabola attachment, and can find the exact location of the leak to be fixed with the tube attachment.

Another area for discussion with the distribution system is contamination like rust, oil, water, and debris.  Compressed air filters should be used to clean the compressed air that supplies your pneumatic products. They can remove the debris for your pneumatic products to have a long life.  You can read about the EXAIR compressed air filters here, “Preventative Maintenance for EXAIR Filters”.

The third section is the demand side.  So, you have an engine that makes the power, the transmission to transfer that power, and the tires to use that power safely and efficiently.  Many managers miss the importance of the demand side within their pneumatic system.  If you are using blow-off devices like open pipes, coolant lines, copper tubes, or drilled pipe; it will be like running your car on flat tires.  It is very unsafe as well as reducing gas mileage.  To improve safety and efficiency, EXAIR has a line of Super Air Nozzles and Super Air Knives.  Not only will it increase your “gas mileage” to save you money, but they also will keep your operators safe.

In this analogy, you can have a high-performance engine and a durable transmission, but if your tires are bald, flat, or cracked; you cannot use your car safely and efficiently.  The same thing with your compressed air system.  You have to optimize your blow-off devices to get the most from your pneumatic system.  EXAIR is a leader in engineered blow-off devices for efficiency and safety.  So, if you want to improve the “health” of your pneumatic system, you should begin at how you are using your compressed air on the demand side.  EXAIR has Application Engineers that will be happy to help you in trying to keep your pneumatic system running like a “brand new car”.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photo: Ford Mustang Roadster by openclipart-VectorsPixabay License