Business Benefits From Compressed Air Efficiency

Use of compressed air, or “the fourth utility” as it’s called, is widespread in many industries.  How you use it in your business is important, for a couple of key considerations:

Monetary cost

Compressed air isn’t free.  Heck, it isn’t even cheap.  According to a Tip Sheet on the U.S. Department of Energy’s website, some companies estimate the cost of generation at $0.18 – $0.30 per 1,000 cubic feet of air.  A typical industrial air compressor will make 4-5 Standard Cubic Feet per Minute per horsepower.  Let’s be generous and assume that our 100HP compressor puts out 500 SCFM and is fully loaded 85% of the time over two shifts per day, five days a week:

500 SCFM X $0.18/1,000 SCF X 60 min/hr X 16 hr/day X 5 days/week X 52 weeks/year =

$22,464.00 estimated annual compressed air cost

If you want to go jot down some numbers from your compressor’s nameplate and your last electric bill, you can accurately calculate your actual cost.  Here’s the formula:

Taking our same 100HP compressor (105 bhp required,) fully loaded 85% of the time, and assuming the motor’s good (95% efficient):

(105 bhp X 0.746 X 4,160 hours X $0.08/kWh X 0.85 X 1.0)÷ 0.95 =

$23,324.20 actual annual compressed air cost

So, our estimate was within 4% of our actual…but the point is, $22,000 to $23,000 is a significant amount of money, which deserves to be spent as wisely as possible, and that means using your compressed air efficiently.  Engineered solutions like EXAIR Intelligent Compressed Air Products can be a major part of this – look through our Case Studies; implementing our products have saved companies as much as 60% on their compressed air costs.

Health & Safety

Injuries and illnesses can be big expenses for business as well. Inefficient use of compressed air can be downright unsafe.  Open ended blow offs present serious hazards, if dead-ended…the pressurized (energized) flow can break the skin and cause a deadly air embolism.  Even some air nozzles that can’t be dead ended (see examples of cross-drilled nozzles on right) cause a different safety hazard, hearing loss due to noise exposure.  This is another case where EXAIR can help.  Not only are our Intelligent Compressed Air Products fully OSHA compliant in regard to dead end pressure, their efficient design also makes them much quieter than other devices.

Efficient use of compressed air can make a big difference in the workplace – not only to your financial bottom line, but to everyone’s safety, health, and livelihood.  If you’d like to find out more about how EXAIR can help, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR Intelligent Compressed Air Products: Leading the Way in Standards Compliance

EXAIR prides itself in offering products with high-performance and peak efficiency. All EXAIR products are manufactured to meet the strict requirements of a variety of different standards, ensuring that you receive a reliable, high quality product that WILL perform to the specifications we publish.

Safety is a top priority for most companies, EXAIR’s line of Intelligent Compressed Air Products meet or exceed the strict safety standards set forth by both OSHA and the European Union. EXAIR products comply with OSHA 29 CFR 1910.242(b), the standard implemented to ensure safe operation of compressed air blowoff devices, and the EU General Product Safety Directive (2001/95/EC).

sag-osha-compliant
The engineered design of our Super Air Nozzles prevents compressed air from penetrating the skin by eliminating the potential of dead-ending when pressed against the skin.

OSHA Chart

Additionally, they comply with the noise limitation requirements set forth under 29 CFR 1910.95(a) and the EU Machinery Directive (2006/42/EC). From the Optimization product line, EXAIR’s Electronic Flow Control and the Electronic Temperature Control meet the low voltage standards of EU Low Voltage Directive (2006/95/EC). A CE label is placed on all products that comply with applicable directives.

UL

UL, or Underwriters Laboratories, is a third-party safety and consulting organization that certifies products after thorough testing and evaluation. EXAIR’s Cabinet Coolers are UL Listed to US and Canadian safety standards. Static Eliminators are also UL Component Recognized. Within our line of Cabinet Coolers is the Hazardous Location Cabinet Cooler, bearing the Classified UL mark for use in classified areas.

ROHS_Vector

In the assembly of electrical products there can be hazardous materials used during production. The Restriction of Hazardous Substances, also known as RoHS or (2002/95/EC), restricts the use of materials such as: lead (Pb), mercury (Hg), cadmium (Cd), hexavalent chromium (CrVI), polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE), and four different phthalates. The electrical portions of EXAIR’s Static Eliminators, Electronic Flow Control, Electronic Temperature Control, Digital Flowmeter, solenoid valves, and thermostats all comply with the amendment outlined in the European Commission decision L 214/65.

In addition to RoHS, EXAIR is also committed to providing products that are conflict mineral free. In support ofconflictfree_v2 Section 1502 of the Dodd-Frank Wall Street Reform and Consumer protection Act, EXAIR complies with the conflict minerals rule to curb illicit trade of tin, tantalum, tungsten and gold in the DRC region. Using the CMRT 4.20 template, we’re able to document our supply chain to ensure our materials are not being sourced from places that could finance conflict in the DRC and surrounding countries.

reachFinally, per Regulation (EC) No 1907/2006 Title I, Article 3, paragraph 3, the European Union enacted legislation requiring substances and chemicals imported into the EU to be registered to ensure a high level of protection for human health and the environment. Per Title II, Article 7, paragraph 1, articles must be registered when a substance is intended to be released during normal conditions of use that would exceed 1 metric ton per producer per year. Since EXAIR products do not contain substances that are intentionally released, registration is not required.

If you’re looking to maintain compliance in your industry, EXAIR products have you covered. If you have any questions about these standards of compliance feel free to reach out to us. Our team of Application Engineers have years of experience in industry are waiting to take your call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Limiting Noise Exposure with Mufflers for Compressed Air

Mufflers come in many shapes and sizes. Each with their own benefits.

If you have ever walked into a manufacturing facility and heard the hiss or even worse the banshee scream of compressed air being exhausted to ambient, whether it be from a cylinder discharge, a timed drain going off, or a bypass valve being activated, they all could be hushed with a muffler. A muffler for compressed air comes in several shapes and sizes. EXAIR offers four separate types from stock to help attenuate the noise disruption within your facility.

The OSHA standard for allowable noise exposure is 29 CFR-1910.95(a) and outlines the number of hours per day any individual can be exposed to a particular noise level. These noise levels are expressed in decibels (dbA).

Hearing loss is the best known, but not the only, ill effect of harmful noise exposure. It can also cause physical and psychological stress, impair concentration, and contribute to workplace accidents or injuries.
Reclassifying Mufflers attenuating the exhaust of a pneumatic cylinder.

The first type I would like to showcase are the Reclassifying Mufflers. These are ideal for cylinder exhausts or valves which commonly contain an oil mist within the air stream which can easily contaminate the surrounding area. The patented design of the removable element separates oil from the exhausted air so virtually no atomized oil is released into the environment. They also attenuate the exhaust noise level up to 35 decibels. The filter element helps the exhaust to meet the OSHA Standard 29 CFR 1910.1000, a worker’s cumulative exposure to oil mist must not exceed 5 mg/m³ by volume in any eight hour shift of a forty hour work week.

The chart below helps to properly size the Reclassifying Muffler for a pneumatic cylinder. One key to proper installation of these mufflers is they must be installed vertically in order to properly trap and drain the oil.

Reclassifying Muffler Quick Pick Chart
Sintered Bronze mufflers are excellent choices for tight installation locations and are easily sized.

The next type of muffler to discuss are the Sintered Bronze Mufflers that are offered in ten different sizes. These are an excellent low cost solution which easily install into new or existing ports. Each size is designed to provide minimal back pressure and restriction for the individual port size. The quick pick chart below helps to easily select the correct size for attenuating the exhaust of a pneumatic cylinder. One key difference between these and the Reclassifying Mufflers is, these do not have to be oriented vertically as they do not collect the oil out of the exhaust air.

undefined

The model 3913 – 3/4″ NPT Straight Through Muffler

If the process air needs to be directed or plumbed away from the operator then the Straight Through Mufflers are the ideal selection as they offer an NPT threaded inlet and exhaust. They are available in three standard NPT sizes from stock. These mufflers can be installed in any orientation and work well with our Vortex Tubes to help pass the cold air through while lowering the operating sound level of the tube. The average noise reduction of the Straight-Through Mufflers is 20 dB. This can easily reduce the noise level of an operation to below the OSHA standard requiring hearing protection for operators in the area.

The model 3903 Heavy Duty Muffler

The final option for mufflers from EXAIR are the Heavy Duty Mufflers. These are available in two sizes from stock and are constructed of corrosion-resistant aluminum with a stainless steel internal screen. These can be installed in any orientation and are ideal for protecting exhaust ports from contaminants that may clog or damage the device they are attached to. The typical noise reduction from installation is 14 dB with these mufflers.

These are available in two sizes from stock and are constructed of corrosion-resistant aluminum with a stainless steel internal screen. These can be installed in any orientation and are ideal for protecting exhaust ports from contaminants that may clog or damage the device they are attached to. The typical noise reduction from installation is 14 dB with these mufflers.

To summarize, EXAIR offers a multitude of options when it comes to lowering sound levels in operation areas that are caused by exhausted compressed air. Each of the mufflers discussed above are shipped same day from stock to meet your immediate need. If you are unsure of which muffler to use for your application, feel free to contact an Application Engineer.

Brian Farno
Application Engineer
Ph. 1-513-671-3322
BrianFarno@EXAIR.com
@EXAIR_BF

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

OSHA Safety, Efficiency, and Flexibility from Engineered Compressed Air Nozzles

Throughout my years here at EXAIR as well as my years in the metal cutting industry, one of the most common quick fixes I see in production environments for compressed air blowoffs in a process is an open copper pipe that is contorted into a position, pinched at the end, and more often than not kinked from repositioning. I call this a quick fix because it does blow air, more often than not it will get production up and running, but it does not meet or exceed OSHA standards for safety and is an inefficient use of compressed air. [OSHA Standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a)]

EXAIR Super Air Nozzles that are easy replacements for 1/8″ and 1/4″ Copper pipe.

The first engineered solution I could offer to prevent any costly OSHA fines and to lower the ambient noise level caused by these blowoffs is to implement an EXAIR Engineered Air Nozzle. We offer a wide variety of nozzles ranging from a 4mm thread up to a 1-1/4″ NPT thread. With this wide range comes a wide variety of forces and flows as well.

Today, I would like to focus on the common sizes of copper blowoffs which are 1/8″ and 1/4″. To simply adapt a nozzle to copper line a compression fitting can be easily sourced, often from EXAIR, and convert the copper tubing in place to an NPT threaded outlet for easy installation of an EXAIR nozzle. More often than not a compression fitting is how the copper tubing is tied into the machine’s compressed air system.

We have a total of 37 engineered air nozzles from stock that will easily fit a compression fitting which goes to a 1/8″ NPT or 1/4″ NPT thread. Several of these are also adjustable through a gap adjustment or a patented shim adjustment to vary the force and flow out of the nozzle from a forceful blast to a gentle breeze in order to me your application needs. What if you want to eliminate the copper line and compressions fittings?

EXAIR offers a replacement option for the ever-common copper tube that is more robust and does not require a tool to be properly repositioned. We currently offer twenty-four different models of our Stay Set Hoses that can be easily connected to any of the nozzles mentioned above. The lengths that are available are 6″ (152mm), 12″ (305mm), 18″ (457mm), 24″ (610mm), 30″ (762mm) and 36″ (914mm).

These lengths are available with two separate connection options. 1/4″ MNPT x 1/4″ MNPT or 1/4″ MNPT x 1/8″ FNPT. The Stay Set Hoses can easily be bent by hand into position for a precise placement of the air pattern from the engineered nozzle attached to it. This permits operators a tool free adjustment for fast and reliable location to keep production up and running. They can also be paired with Magnetic Bases.

EXAIR Magnetic Bases are available in single outlet or dual outlet configurations. Both include a 100 lb. pull magnet that will hold tight to any ferrous metal surface for secure mounting, as well as a quick 1/4 turn miniature valve on each outlet. This permits independent customization of the force our of each output for the dual outlet mag base. Each magnetic base offers a 1/4″ FNPT inlet port and outlet port. We offer these with any of combination of the Stay Set Hoses mentioned above as well as any of the Super Air Nozzles mentioned above.

Mag Bases come with one or two outlets. Stay Set Hoses come in lengths from 6″ to 36″.

The Super Air Nozzles, Stay Set Hoses, and Magnetic Bases can be easily combined before they ship to your facility to make a complete blowoff station that is easily installed and adjusted to fit any of the needs your process may have for a point of use blowoff. If you want help determining how much compressed air you would save by replacing the open pipe blowoffs with an engineered solution like a Stay Set Magnetic Base Blowoff System please contact myself or any Application Engineer here at EXAIR.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Is PVC Pipe Alright to Use with Compressed Air?

A question arises every now and then on whether or not PVC pipe, yes the stuff from your local hardware store that says it is rated for 200 psi, is safe to use as compressed air supply line.   The answer is always the same,  NO! OSHA agrees – see their statement here.

Schedule 40 PVC pipe is not designed nor rated for use with compressed air or other gases.  PVC pipe will explode under pressure, it is impacted significantly by temperature and can be difficult to get airtight.

PVC pipe was originally designed and tested for conveyance of liquids or products that cannot be compressed, rather they can be pressurized.   The largest concern is the failure method of the piping itself.   When being used with a liquid that cannot be compressed, if there is a failure (crack or hole) then the piping will spring a leak and not shatter.   When introducing a compressed gas, such as compressed air, if there is a failure the method ends up being shrapnel.  This YouTube video does a good job of illustrating how the pipe shatters.

While it may seem that it takes a good amount of pressure to cause a failure in the pipe, that is often not the case.  I have chatted with some local shop owners who decided to run PVC as a quick and cheap alternative to get their machines up and running.

They each experienced the same failures at different points in time as well.  The worst one was a section of PVC pipe installed over a workbench failed where an operator would normally be standing. Luckily the failure happened at night when no one was there.  Even though no one got injured this still caused a considerable expense to the company because the compressor ran overnight trying to pressurize a ruptured line.

Temperature will impact the PVC as well. Schedule 40 PVC is generally rated for use between 70°F and 140°F (21°-60°C). Pipes that are installed outside or in non temperature controlled buildings can freeze the pipes and make them brittle.

If you haven’t worked with PVC before or do not let the sealant set, it can be hard to get a good seal, leading to leaks and a weak spot in the system.

The point of this is the cheapest, quick, and easy solutions are more often , the ones that will cost the most in the long run.

If you would like to discuss proper compressed air piping and how to save compressed air on your systems, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Image courtesy of: Dennis Hill, Creative Commons License

Minimize Exposure to Hazards Using the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

HierarchyControls
CDC Hierarchy of Controls

The least effective methods are Administrative Controls and PPE. Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE (Personal Protective Equipment) is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process to the hazardous task is no longer performed.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or reduce the hazards of compressed air usage.

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and pressure safe engineered air products such as Air Nozzles, Air Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

Nozzles

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace.

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Reduce Sound Level in your Factory, Improve Worker Safety and Comfort

Checking the sound level in your processes is an important aspect of ensuring a safe working environment for your employees. Loud noises and the exposure time can lead to significant health concerns. Permanent hearing loss, increased stress levels due to the uncomfortable work environment, and potential injury due to lack of concentration or inability to hear the surroundings are all examples of some risks associated with a noisy environment.

The Occupational Safety and Health Administration, known by most simply as OSHA, introduced Standard 29 CFR 1910.95(a) as a means of protecting operators from injury associated with high noise levels. The chart below indicates maximum allowable exposure time based on different noise levels. At just 90 dBA, an operator can operate safely for 8 hours. Open end pipe blowoffs and some air guns fitted with cross drilled relief holes will often result in noise levels in excess of 100 dBA. At 110 dBA, permanent hearing loss can be experienced in just 30 minutes!

OSHA Chart

The first step to lowering your sound level is to take a baseline reading of your various processes and devices that are causing the noise. EXAIR’s Sound Level Meter, Model 9104, is an easy to use instrument that provides a digital readout of the sound level. They come with an NIST traceable calibration certificate and will allow you to determine what processes and areas are causing the most trouble.

SoundMeter_new_nist225

From there, EXAIR has a wide range of Intelligent Compressed Air Products® that are designed to reduce compressed air consumption as well as sound levels. For noisy blowoffs where you’re currently using an open-ended pipe or a loud cross-drilled nozzle, EXAIR’s Super Air Nozzles are the ideal solution. Not only will they pay for themselves over time due to compressed air savings, but your operators will thank you when they’re able to hear later on in life!!

Drilled pipe is another common culprit of high noise levels. Rather than purchasing an engineered solution, the idea is that a simple drilled pipe is just as effective right? Not at all!! Not only does a drilled pipe produce exceptionally high sound levels, but the amount of compressed air used is also very inefficient. EXAIR’s Super Air Knife is available in lengths ranging from 3”-108” and has a sound level of just 69 dBA at 80 PSIG. At this sound level, operators won’t even require hearing protection at all!

SAK vs drilled pipe
EXAIR’s Super Air Knife is the ideal solution for replacing noisy, inefficient drilled pipe

With all of these products available in stock, EXAIR has the tools you need to reduce sound level in your processes. If you’d like to talk to an Application Engineer about any applications that you feel could benefit from a sound reduction, give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD