Filtered Compressed Air is the Best Compressed Air: Three Filter Types

When you are using compressed air to Clean, Cool, and or Dry products in production the quality of compressed air you are using is very important. You wouldn’t want to be blowing oil or condensation from your compressed air onto a surface you are trying to dry. Or blowing debris on a surface you are trying to clean.

The most common type of oil removal filter uses a coalescing element.  Oil entrained in pressurized gas flow isn’t as dense as water – so centrifugal elements won’t remove it – and it tends to act like particulate…but very fine particulate – so typical sintered particulate elements won’t remove it.  Coalescing elements, however, are made of a tight fiber mesh.  This not only catches any trace of oil in the air flow, but also much finer particulate than those sintered elements.  EXAIR Oil Removal Filters, like the Model 9027 , provide additional particulate filtration to 0.03 microns.  That’s some pretty clean air.

Dry Particulate Filters: Dry particulate filters are usually employed to remove desiccant particles after an adsorption dryer. They can also be implemented at point of use to remove any corrosion particles from the compressed air. Dry particulate filters operate in a similar manner as a coalescing filter, capturing and retaining particles within the filter media.

The particulate element captures solids larger than 5 microns, and the centrifugal element eliminates moisture.

Coalescing Filters: Coalescing filters are used for removing water and aerosols. Small droplets are caught in a filter media and merged into larger droplets that are then taken out of the filter. A re-entrainment barrier prevents these droplets from reentering the air. Most of the liquid coalescing filters remove is water and oil. These filters also remove particulates from compressed air, trapping them within the filter media, which can lead to pressure drops if not changed regularly. Coalescing filters remove most contaminants very well.

The coalescing element catches oil and very fine particulate

Adsorption Filters: Vapor removal filters are typically used to remove gaseous lubricants that will go through the coalescing filter. Because they use an adsorption process, vapor removal filters should not be used to capture lubricant aerosols. Aerosols will quickly saturate the filter, rendering it useless in a matter of hours. Sending air through a coalescing filter prior to the vapor removal filter will prevent this damage. The adsorption process uses activated carbon granules, carbon cloth or paper to capture and remove contaminants. Activated charcoal is the most common filter media because it has a large open pore structure; a handful of activated charcoal has the surface area of a football field.

Knowing the needs of your compressed air system can help you chose the right filter. If your air needs a high level of filtration or basic contaminants removed, cleaning your air is an important step in the compressed air process. Check out EXAIRS filter options here!

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Compressed Air System Equipment – What You Need To Know

The use of compressed air in industry is so widespread that it’s long been called “the fourth utility” (along with electricity, water, and natural gas). As a function of energy consumption (running an air compressor) to energy generated (operation of pneumatic equipment), only 10-15% of the energy consumed is converted to usable energy stored as compressed air. Its “bang for the buck”, however, comes when you consider the total cost of ownership – yes, it costs a lot to generate, but:

  • It’s relatively safe, when compared to the risks of electrocution, combustion, and explosion associated with electricity & natural gas.
  • Air operated tools, equipment, and products are generally much cheaper than their electric, gas, or hydraulic powered counterparts.
  • Air operated products, like anything, require periodic maintenance, but oftentimes, that maintenance simply comes down to keeping the air supply clean and moisture free, unlike the extensive (and expensive) maintenance requirements of other industrial machinery.

Even with these advantages, though, it’s still critical to get all you can out of that 10-15% of the energy you’re consuming to make that compressed air, and that starts with having the right stuff in the right place. Now, all of the following “stuff” might not apply to every compressed air system. I once worked in a repair shop, for example, with a small compressor that was used for a couple of blow off guns, impact drivers, and a sidearm grinder. I’ve also done field service in facilities with hundreds of pneumatic cylinders & air motors that operated their machinery. Those places had even more “stuff” than I’m devoting space to in this blog, but here’s a list of the “usual suspects” that you’ll encounter in a properly designed compressed air system:

  • Air compressor. I mean, of course you need a compressor, but the size and type will be determined by how you’re going to use your air. The small repair shop I worked in had a 5HP reciprocating positive displacement compressor with a 50 gallon tank, and that was fine. The larger facilities I visited often had several 100 + HP dynamic centrifugal or axial compressors, which get more efficient with size.
  • Air preparation. This includes a number of components that can be used to cool, clean, and dry the air your compressor is generating:
    • Pressurizing a gas raises its temperature as well. Hot compressed air could cause unsafe surface temperatures and can damage gaskets, seals, and other components in the system. Smaller compressors might not have this problem, as the heat of compression is often dissipated through the wall of the receiver tank and the piping at a rate sufficient to keep the relatively low (and often intermittent) flow at a reasonable temperature. Larger compressors usually come with an aftercooler.
    • The air you compress likely has a certain amount of moisture in it…after nitrogen and oxygen, water vapor usually makes up more of the content of atmospheric air than all other trace gases combined. There are a number of air dryer types; selection will be dictated by the specifics of your facility.
    • Your air is going to have other contaminants in it too. We did welding & grinding in the repair shop where our compressor sat in the corner. We kept a few spare intake filters handy, and replaced them regularly. In conjunction with the aftercooler & dryer, larger industrial compressors will also have particulate filters for these solids. For extra protection, coalescing filters for oil vapor, and adsorption filters for other gases & liquid vapors, are specified.
  • Distribution. In the repair shop, we had a 3/4″ black iron pipe that ran across the ceiling, with a few tees & piping that brought the air down to the individual stations where we used it. The larger facilities I visited had larger variations of this “trunk and branch” type network, and some were even big enough to make use of a loop layout…these were especially popular when multiple air compressors were located throughout the facility. In addition to black iron, copper & aluminum pipe (but NEVER PVC) are commonly used too.
  • Condensate removal. The small repair shop compressor had a valve on the bottom of the tank with a small hose that we’d blow down into a plastic jug periodically. Larger systems will have more complex, and oftentimes automated condensate management systems.

So, that’s the system-wide “stuff” you’ll usually encounter in a properly designed compressed air system. After that, we’ll find a number of point-of-use components:

  • Air preparation, part 2. The compressor intake & discharge filtration mentioned above make sure that you’re putting clean air in the distribution piping. That’s fine if your distribution piping is corrosion resistant, like aluminum or copper, but black iron WILL corrode, and that’s why you need point-of-use filters. EXAIR Automatic Drain Filter Separators have 5 micron particulate elements, and centrifugal elements that ‘spin’ any moisture out. If oil is an issue, our Oil Removal Filters have coalescing elements for oil/oil vapor removal, and they provide additional particulate protection to 0.03 microns.
  • Pressure control. Your compressor’s discharge pressure needs to be high enough to operate your pneumatic device(s) with the highest pressure demand. Odds are, though, that not everything in your plant needs to be operated at that pressure. EXAIR Pressure Regulators are a quick & easy way to ‘dial in’ the precise supply pressure needed for specific products so they can get the job done, without wasting compressed air.
  • Storage. This could also be considered system “stuff”, but I’m including it under point-of-use because that’s oftentimes the reason for intermediate storage. Having a ready supply of compressed air near an intermittent and/or large consumption device can ensure proper operation of that device, as well as others in the system that might be “robbed” when that device is actuated. They’re good for the system, too, as they can eliminate the need for higher header pressures, which cause higher operating costs, and increased potential for leaks. EXAIR Model 9500-60 60 Gallon Receiver Tanks are an ideal solution for these situations.

For more information on proper installation and use of compressed air system “stuff” like this, the Compressed Air & Gas Institute’s Compressed Air and Gas Handbook has a good deal of detailed information. The Air Data section of EXAIR’s own Knowledge Base is a great resource as well.

Of course, all the attention you can pay to efficiency on the supply side doesn’t matter near as much if you’re not paying attention to HOW you’re using your compressed air. EXAIR Intelligent Compressed Air Products are designed with efficiency, safety, and noise reduction in mind. Among the other ways my fellow Application Engineers and I can help you get the most out of your compressed air system, we’re also here to make sure you get the right products for your job. To find out more, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Importance of Compressed Air Filters

The last home I purchased had an all-seasons room, but the sellers told me the air conditioner that controlled the room temperature wasn’t working. When I moved in and tested the unit, the sellers were correct that it did not run. I started breaking it down and thought that maybe it could use a good cleaning. During this I found the filter, black and covered with pet fur. It was a washable filter so I cleaned it and let it air dry as I continued to clean remaining areas of the unit. When I put the filter back in and tried running the unit it was a miracle, it was running and producing cool air. I did nothing other than clean and clear the filter, no replacement parts, no tweaking and no repairmen.

I tell this story to many people now as it also relates to appliances, cars, lawn mowers and now I emphasize filters for compressed air systems. Using auto drain filters and oil removal filters is imperative to keeping your air clean before it gets to your tooling and equipment. Keeping water condensate and particulates contained to your filters is critical to the operation and life of your tooling and equipment. Older compressed air lines can begin to rust or corrode inside, creating scale which can jam and cause inefficiencies. Sediment and other contaminants will build up and could cause damage to your compressed air systems.

Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

EXAIR carries multiple sizes and types of compressed air filters available from stock. Our Particulate and Coalescing filters can be found in our catalog and online (use the link above). If you have an application and need help selecting and sizing the right filter for your needs please contact one of our application engineers by calling 800.903.9247.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Which Condensate Drain Is Best For Your Compressed Air System?

In a perfect world, your air compressor’s intake would be free of dirt, oil, and water. Proper maintenance (i.e., periodic cleaning and/or changing) of the intake filter will keep most of the dirt out. Oil and water vapor will pass right through…but that’s not the end of the world (however imperfect it may be); they’re easy to take care of later in the process.

Once these vapors have been compressed (along with all that air that was drawn in), it’ll go into the receiver (usually via an aftercooler in industrial compressors) where it cools down, and that vapor condenses. If it’s left alone, a couple of things can happen:

  • Standing water in the bottom of a steel tank will cause corrosion. This can be carried into your compressed air distribution system. Over time, it will also rust through the reservoir. You don’t want either of these things to happen.
  • Eventually, it’ll take up enough space that your reservoir’s capacity will effectively shrink. That can cause your compressor to cycle rapidly. You don’t want that either.

Even the smallest of compressors will have manual drain valves on the bottoms of their reservoirs. Users will simply blow down the gallon or so tank every so often and go about their business. The small amount of electrical power that the compressor will use to recharge those tanks makes this a perfectly acceptable practice.

In the perfect world I mentioned above, the large reservoirs on industrial air compressors could be drained of condensate in the same manner. There are a few challenges to periodic manual draining:

  • You could do it on a schedule, but varying levels of humidity mean different accumulation rates of condensation. Weekly blowdowns might be OK in the winter, but you may need to do it daily in the summer. And a couple days a week in the spring or fall. It can be a real chore to keep track of all of that.
  • A practiced operator may develop the skill to shut the valve immediately upon the last drop of condensate passing. More often than not, though, you’re going to lose some compressed air doing it manually.
  • File this under “don’t try this at home (or anywhere, really)” – an unfortunately all-too-common practice is to just leave a manual drain cracked open. It works, but it wastes compressed air. On purpose. There’s too much accidental waste to give this any further discussion. Just don’t do it.
  • Plain old forgetfulness, someone going on vacation, or even leaving the company could result in someone else noticing the compressor is frequently cycling (because the reservoir is filling with water…see above), and realizing nobody’s drained the tank in a while.

Again, these manual drains are quite common, especially in smaller air compressor systems…and so are the above challenges. I may or may not have personal experience with an incident similar to that last one. Good news is, there are automated products designed to prevent this from happening to you:

  • Timer drains are popular and inexpensive. They operate just as advertised: a programmable timer opens and closes the drain valve just like you tell it to. They don’t do anything at all to address the first two challenges above: they might blow down for longer than needed (and waste compressed air) or not long enough (and allow water to build up in the reservoir.) They come in two primary configurations:
    • Solenoid Valve: the timer energizes the valve’s coil to open the valve, and a spring shuts it when the timer runs out. Strainers will prevent blockage, and will need periodic maintenance.
    • Ball Valve: the timer operates an electric actuator to open & close the valve. The full port opening of the ball valve means a strainer is usually not necessary, so these are less maintenance intensive.
  • Demand (AKA “no waste” or “zero loss”) drains are actuated by the condensate level in the reservoir. They don’t discharge any of the reservoir’s compressed air, because they close before the last bit of water exits. There are a few common options to choose from:
    • Mechanical float drains can be internal or external…the latter is more common for use with air compressor reservoirs; the former is fairly standard with point-of-use filters (more on that later). When the liquid level rises, the float opens the drain; when liquid level drops, the float closes the drain…easy as that. They CAN be susceptible to clogging with debris, but many have screens to prevent or limit that.
    • Electronic types use a magnetic reed switch or capacitance device to sense the condensate level…so they require electric power.
    • These cost more than the timer types, though, and they’ve got a number of moving parts, so they can find themselves in need of repair. Inexpensive and user-friendly rebuild kits are oftentimes available, and many of these come with alarms to let you know when to use that rebuild kit.

Whether you have a manual, timer, or demand drain, keep in mind that some moisture can still be carried over, and rust/scale can still form in pipelines. Good engineering practice calls for point-of-use filtration, like EXAIR’s Automatic Drain Filter Separators and Oil Removal Filters. If you’d like to talk more about getting the most out of your compressed air system, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook