The Importance Of Preventative Maintenance

The first brand-new car I ever bought was a 1995 Ford Escort wagon. I was playing in a band pretty much every weekend (and the occasional weeknight), and my digital piano case fit perfectly in the back – I took it with me to make sure when I went to test drive it. Over eleven years, I put just shy of 200,000 miles on it, and, aside from gas, oil, and tires, had a little under $1,000 in repair costs.

There used to a legendary warning about not buying a car made on a Monday (since the auto workers were presumably recovering from the weekend) or a Friday (since they were equally presumably distracted by getting ready for the weekend). Some folks only buy a particular make of automobile (or shun another) because that’s the make their favorite race car driver (or least favorite) drives. I don’t know what day of the week that Escort was made, and I couldn’t tell you which race car drivers are loyal to the Ford Motor Company, but I CAN tell you that I followed the manufacturer’s recommended maintenance schedule to a “T”. And I’m pretty sure that had a LOT more to do with that little red wagon’s longevity than a bunch of auto workers’ attention to detail (or lack thereof) or who’s popular on the NASCAR circuit.

The same is true for many components that make up your compressed air system. You’re going to want to change the lubricating oil in your compressor on a regular basis (as recommended by the manufacturer) for the exact same reasons you change the oil in your car’s engine. You need to replace particulate elements in compressed air filters, same as you need to periodically replace your car’s air filter.

For point-of-use devices – like most EXAIR compressed air products – preventative maintenance largely comes down to replacing those particulate elements in your filters. Products like our Air Knives, Air Wipes, Air Amplifiers, E-Vac Vacuum Generators, Reversible Drum Vacs, and Vortex Tubes all have relatively small passages that the air has to flow through, so it’s critical to their performance to supply them with clean air. In fact, if you DO supply these products with clean air, they’ll run darn near indefinitely, maintenance free. That’s why all of our product Kits include a Filter Separator with a 5 micron particulate element, and a centrifugal element for moisture removal.

Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

One question we get on a pretty regular basis is, how often do you have to change the particulate element in our Filter Separators. Good engineering practice calls for replacing that element when the differential pressure across the filter reaches 5psi. Now, you can measure the pressure on either side of the Filter Separator and change the element when the outlet pressure drops 5psi from the inlet. If you can shut down long enough to do so, that’s an efficient way to do it – that ensures you get the most ‘bang for your buck’ from that element.

Of course, those elements don’t cost all that much – but shutting down a production line, for even the few minutes it takes to replace an element, can get VERY costly. Facilities that run 24/7 will usually plan some downtime for periodic maintenance on SOMETHING…and they’ll just replace their Filter Separator’s particulate elements during those downtimes.

If you’ve got questions about getting the most out of our products – and, by extension, your compressed air system – give me a call.

Russ Bowman, CCASS

Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Importance Of Preventative Maintenance

The first new car I ever bought was a 1995 Ford Escort Wagon. It got GREAT gas mileage (which was important for my 25 mile one-way commute to the day job), and had ample room to haul my keyboards & amplifier rig (which was just as important to my side hustle as a potential rock star). Since it only had four miles on the odometer – and, it was the first purchase I ever financed over a period of YEARS, I decided to follow the owner’s manual’s maintenance schedule religiously. And it paid off: I got eleven years and just shy of 200,000 miles out of one of the least expensive cars ever made. It was actually still running like a top when I sold it to “upgrade” to a minivan, which suited my needs at the time for a vehicle that fitted the car seats for our little boys (who are now a U.S. Marine and a hippie college student, respectively). I actually followed the maintenance schedule for that minivan too, and got 14 years & almost 180,000 miles out of it, without a major breakdown.

Whether you call it “preventive”, “preventative”, “scheduled”, or “planned” maintenance, there’s an old adage that applies in any case:

“If you don’t plan maintenance, it’ll plan itself without regard to your schedule.”

While following the proverbial “owner’s manual’s maintenance schedule” doesn’t guarantee against catastrophic failures, it’s awfully good insurance against them. For your privately owned vehicles, I encourage you to follow the owner’s guide as best you can. For your compressed air system – from the compressor to the devices it provided compressed to (and everything in between) – there’s likely similar documentation to follow, and for good reason. Consider:

  • Air compressor maintenance. Failure to properly maintain a compressor can increase energy consumption by not keeping it operating as efficiently as possible. For example, just like not periodically replacing your car engine’s air filter will impact your gas mileage, failure to do the same for your compressor’s intake air filter will impact its production of compressed air.
  • Air leaks are costly. Not only do they waste the money you spent on running the compressor (a leak that’s equivalent to a 1/16″ diameter hole costs you over $700.00 annually – let me know if you want to do the math on that), your system pressure takes a hit too. Pressure drop caused by those leaks (plural because there’s rarely just one) can create what’s known as “false demand”, which costs you money as well: every 2psi increase in compressor discharge pressure makes for a 1% increase in power consumption. So, it’s really important to stay on top of them. Regularly scheduled surveys with an instrument like EXAIR’s Model 9207 Ultrasonic Leak Detector allows you to quickly find – and then fix – those leaks.
EXAIR Model 9207 Ultrasonic Leak Detector comes with everything you need to find out if you have a leak (with the parabolic disc, lower right) and then zero in on its exact location (with the tubular extension, bottom).
  • Filters, part 1: I already mentioned the compressor intake filter above, but the rest of the filters in the system need attention from time to time as well. Filter manufacturers typically call for replacing the element in a filter when pressure drop reaches a certain point. I’ve seen published values of 2-5psi for that. Of course, that may not occur at a convenient time to shut down everything downstream of that filter, so lots of folks replace those elements as part of planned maintenance evolutions that require depressurization of that particular part of the system anyway. Dirty filters mean you have to increase their inlet pressure to maintain the same outlet pressure you had when they were clean – and the same 1% increase in power consumption for a 2psi pressure increase applies here too.
  • Filters, part 2: most compressed air operated products have small passages that the air has to flow through, and without filtration, those can get clogged with dirt that the intake filter doesn’t catch, solid particulate from compressor ‘wear & tear’, and rust from header pipe corrosion, just to name the “usual suspects”. An argument could be made that installation & upkeep of properly rated Filter Separators at the point of use of these devices is part of those devices’ planned maintenance. In any case, it’s akin to the awfully good insurance against catastrophic failures I mentioned earlier.
Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

Again, many of the components that make up a typical industrial compressed air system will have a manufacturer’s recommended maintenance schedule, but if they don’t, how can you properly plan for it? Monitoring of certain system parameters can be a valuable tool for determining how often some planned maintenance should be performed:

  • Power consumption of the compressor. The benefit of measuring & logging this on a regular basis is, if you see sudden changes, you can start looking for what’s causing them. Maybe a bearing or belt is wearing out, some leaks have popped up, or a filter’s clogged. In any case, it’s an indication that SOMETHING needs attention. Large industrial compressors might even have power monitoring in their control scheme. If not, there ARE other parameters you can measure…like:
  • Pressure and flow. EXAIR’s Pressure Sensing Digital Flowmeters make monitoring these parameters quick and easy. Managing the readings can be done with our USB Data Logger, or you can get it on your computer, via a Zigbee Mesh Gateway, with our Wireless Models.
EXAIR Digital Flowmeters are made for iron, copper, or aluminum compressed air pipe in sizes from 1/2″ to 8″ diameters. Options include Pressure Sensing, Wireless Output, USB Data Logger, Hot Tap, and Metric display.

At EXAIR, we’re committed to helping you get the most out of your compressed air system. If you’d like our help with that, give me a call.

Russ Bowman, CCASS

Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Featured image courtesy of Compressor1creative commons license

Turn Your One Bedroom Fixer-upper Compressor Room into a Pent House Suite!

First lets paint a picture, by starting with my first 400 Sq.Ft Bachelor pad in Holland Michigan. It was my first time after college living on my own and paying my own room and board! So I did what every fresh out of college 25-year-old male does, I scoured the internet for the cheapest possible living arrangements! And that was a one bedroom(ish) apartment that was one of three rentals they made from a small 1,500 Sq.ft house! It was rough, I could smell the smoke from my neighbors. I could tell what they were having for dinner by the smell and I could hear EVERYTHING! Needless to say the conditions were not the best to relax and properly live my life. (Just had a little PTSD thinking about it)

Yeah, that was a problem too……… (Longest 6 months of my Life)

I said all of that just to say the Environment Matters! For me, it was my living conditions and I learned that the hard way! But for your Air compressor it’s the compressor room in which it sits! While we don’t sell compressors, pretty much all of our products use compressed air so helping you generate and use it in the best and most efficient way is important to us!

Some of the mistakes that are commonly made in the compressor room are by design, and others are operational. Let’s cover a few;

  • Poor ventilation: Air compressors get hot. They’ve got a lot of moving parts, and many of those parts are moving under a great amount of force (pressure is literally defined as force per unit area), and at a high rate of speed. Add in the heat of compression (it takes energy to compress air, and that energy has to go somewhere, (something another colleague, John Ball, explains here). Add in all that friction, and you come up with a TREMENDOUS amount of heat. An industry rule of thumb, in fact, states that over 2500 Btu/hr of heat is generated, PER HORSEPOWER, by a typical industrial air compressor. If the compressor room isn’t big enough, you’ll need an exhaust fan capable of removing all that heat. Many compressors also have optional heat recovery systems as well.
  • Lack of filtration: Take a good, full breath in through your nose, right now. Did you smell anything unpleasant or irritating? I hope not…clean air is a “must” for your lungs (and the rest of your body), and the same is true for your air compressor (and the rest of your compressed air system). Keeping up with the maintenance on the intake filter is literally “starting where it all begins”…from the 1st paragraph.
  • Not removing moisture: Water & water vapor will have an adverse effect on many components of your compressed air system: it’ll cause rust in iron pipes, damage the seals in air cylinders, motors, tools, etc., and if you use it for blow off or conveying, it’ll contaminate your product.
  • Leaks: The compressor room is loud, so leaks are going to be pretty big before you can hear them. And to add insult to injury, the vibration of a running compressor makes the compressor room a prime location for them to occur. Even one small leak that you couldn’t hear in a quieter area will cost you over $100 over the course of the year, and maybe only take minutes to fix. Good news is, even if you can’t hear them, they ALL make an ultrasonic signature, and we’ve got something for that.
  • Ignoring maintenance. If you don’t schedule planned maintenance, your equipment will schedule “corrective” maintenance for you…oftentimes at greater expense, and with no regard to your schedule.
    • Moving metal parts that make metal-to-metal contact (or that have very tight spacing tolerances) HAVE to be lubricated properly. If you run low on oil, or let it get dirty or emulsified, severe damage will follow. Keeping an eye on the oil level, and changing it (and the filter) at the manufacturer’s recommended intervals, is critical.
    • Emulsified or otherwise contaminated oil can damage seals, gaskets, and o-rings. That’s obviously a big problem for the compressor, and when it carries over into the header, it’s a big problem for pneumatic cylinders & tools as well. Periodic sampling & analysis of your oil can provide timely notice of issues that can be corrected before they become catastrophic failures.
    • Depending on the type of compressor, and its drive system, the manufacturer’s maintenance recommendations may also include:
      • Checking coupling or belt alignment of the drive.
      • Checking bolts for loosening due to vibration (a “necessary evil”, especially with reciprocating compressors).
      • Adjusting the pistons to maintain valve plate clearance.
      • Tightening or replacing the mounts & vibration pads.

Don’t put your compressor in a room that smells like a cigarette butt covered in cooking grease that is infested with cockroaches. Set it up in the pent house, and it will reward you with dependable and efficient operation for a very long time! If you’d like to find out more about how EXAIR Corporation can help you get the most out of your compressed air system, give me a call.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

German Cockroach image courtesy of Sarah CampCreative Commons License.

Intelligent Compressed Air®: Common Compressor Room Mistakes, And How To Avoid Them

While we don’t sell, install, or service air compressors, EXAIR Intelligent Compressed Air Products run on compressed air, so helping you get the most out of your compressed air system is important to us. Today, we’re starting where it all begins: the compressor room.

Some of the mistakes that are commonly made in the compressor room are by design, and others are operational. My colleague Tyler Daniel wrote a great blog on design considerations recently, so I’m going to focus on the operational aspects, which include maintenance…and maybe some minor design stuff:

  • Poor ventilation: Air compressors get hot. They’ve got a lot of moving parts, and many of those parts are moving under a great amount of force (pressure is literally defined as force per unit area), and at a high rate of speed. Add in the heat of compression (it takes energy to compress air, and that energy has to go somewhere, something another colleague, John Ball, explains here), to all that friction and you come up with a TREMENDOUS amount of heat. An industry thumbrule, in fact, states that over 2500 Btu/hr of heat is generated, PER HORSEPOWER, by a typical industrial air compressor. If the compressor room isn’t big enough, you’ll need an exhaust fan capable of removing all that heat.
  • Lack of filtration: Take a good, full breath in through your nose, right now. Did you smell anything unpleasant or irritating? I hope not…clean air is a “must” for your lungs (and the rest of your body), and the same is true for your air compressor (and the rest of your compressed air system). Keeping up with the maintenance on the intake filter is literally “starting where it all begins”…from the 1st paragraph.
  • Not removing moisture: Water & water vapor will have an adverse effect on many components of your compressed air system: it’ll cause rust in iron pipes, damage the seals in air cylinders, motors, tools, etc., and if you use it for blow off or conveying, it’ll contaminate your product. We’ve writtenagain and again…about the importance of dryers, and which type might be best for you.
  • Tolerating leaks: The compressor room is loud, so leaks are going to be pretty big before you can hear them. And to add insult to injury, the vibration of a running compressor makes the compressor room a prime location for them to occur. Even one small leak that you couldn’t hear in a quieter area will cost you over $100 over the course of the year, and maybe only take minutes to fix. Good news is, even if you can’t hear them, they ALL make an ultrasonic signature, and we’ve got something for that.
EXAIR Model 9061 Ultrasonic Leak Detector “finds them all, big or small!”
  • Ignoring maintenance. If you don’t schedule planned maintenance, your equipment will schedule corrective maintenance for you…oftentimes at greater expense, and with no regard to your schedule.
    • Moving metal parts that make metal-to-metal contact (or that have very tight spacing tolerances) HAVE to be lubricated properly. If you run low on oil, or let it get dirty or emulsified, severe damage will follow. Keeping an eye on the oil level, and changing it (and the filter) at the manufacturer’s recommended intervals, is critical.
    • Emulsified or otherwise contaminated oil can damage seals, gaskets, and o-rings. That’s obviously a big problem for the compressor, and when it carries over into the header, it’s a big problem for pneumatic cylinders & tools as well. Periodic sampling & analysis of your oil can provide timely notice of issues that can be corrected before they become catastrophic failures.
    • Depending on the type of compressor, and its drive system, the manufacturer’s maintenance recommendations may also include:
      • Checking coupling or belt alignment of the drive.
      • Checking bolts for loosening due to vibration (a “necessary evil”, especially with reciprocating compressors).
      • Adjusting the pistons to maintain valve plate clearance.
      • Tightening or replacing the mounts & vibration pads.

If you’d like to find out more about how EXAIR Corporation can help you get the most out of your compressed air system, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Image courtesy of PEO ACWA Some rights reserved Creative Commons Attribution 2.0 Generic (CC BY 2.0)