EXAIR has been a pioneer in compressed air products for efficiency, safety, and quality. We have designed our products using some interesting inventors from the past; like Henri Coanda and Giovanni Venturi. These fluid dynamic engineers found a way to entrain ambient air. We use these phenomena to increase the efficiency of our products by adding free ambient air to the airstream. This will create a hard-hitting force without using a lot of compressed air. Since compressed air is very expensive to produce, it will save you much money when using our blow-off devices. To save even more money, EXAIR does offer valves to turn off the compressed air supply when not in use. In this blog, I will go over the types of valves that we have.
The Manual Valves allow operators to turn on and off their system by hand. The full-flow ball valves range from ¼” NPT to 1 1/4” NPT in size and will not restrict flows. EXAIR also offers a manual foot pedal valve for hands-free operations. This ¼” NPT foot valve has a 3-way operation and works great if the operator has to use both hands in their process.
EXAIR also offers Solenoid Valves to turn on and off the supply of compressed air electrically for automated systems. We offer Solenoid Valves in three different voltages; 110Vac, 240Vac, and 24Vdc. They have a large range of flows with ports ranging from ¼” NPT to 1” NPT. All models are UL listed and are CE and RoHS compliant.
In more elaborate situations, EXAIR has attached these solenoid valves to a miniature PLC-like controller. It is called the Electronic Flow Control, or EFC. It uses a photoelectric eye to detect the part and trigger a timing sequence. We have eight different timing operations to best combine the trigger mechanism with the blow-off device. This is the next step in optimization, which will keep the compressed air usage to a minimum.
EXAIR created a chart that shows “Six Steps to Optimizing Your Compressed Air System.” Even though EXAIR has the most efficient products on the market for pneumatic systems, we still want to help our customers save even more money. When not in use, the compressed air should be turned off, according to the fourth step. In this blog, I discussed some products that can assist you with this. If you wish to discuss further how to optimize your compressed air system, an Application Engineer at EXAIR will be happy to assist you.
If there is one thing you can always count on it’s a good calculator, and EXAIR offers you 3 — right on our website!!! The calculator library consists of an Air Savings Calculator, an EFC Calculator, and a Cabinet Cooler sizing calculator. All 3 of these add exceptional value and insight into our products. Let’s take a minute and look at each of these calculators in a little more detail.
The Air Saving Calculator allows you to compare a current product, to one of our products based upon overall cost. In order to make this effective for you, you will need to know the SCFM that your current solution is using. With that information, we can factor in the cost of our product and the SCFM consumption of this new solution, and give you an Air and Cost savings number. For example, if you are using a 1/4″ open pipe for blow off, you would be using @ 40 SCFM (not going to mention the OSHA violations – that’s for another blog). By placing one of our Super Air Nozzles on this open pipe, we will save you so much air (SCFM) that you can quickly see (above) that this one nozzle, can save you up to $1350 per year… One Nozzle!!!
The next calculator is the EFC calculator. An EFC is an Electronic Flow Control that can help you quickly automate your process. The EFC will allow you to use air only when it’s necessary and cut down on consumption. For example, if your conveyor has dead space between products, the EFC will shut the air flow off during the dead space. The calculator will tell you how much money you can save by installing the EFC. This will even tell you how long it will take to pay off the initial cost of the EFC unit. To use this calculator you will need the SCFM being consumed, the % of time that the product needs to be on, the purchase price of the EFC (this varies by size, call for details, or see on the link), and your cost of compressed air. We have $0.25 in this blank as a general standard, but if you know your actual, you will get a more concise answer. Your cost could be much higher, I’d be surprised if it is lower. The Example to the left shows the effects of a $1200 EFC that runs a product at 80 SCFM, and needs to be on 45% of the day. The EFC turns off the air the other 55% of the day when there is no reason to run the air. This pays for itself in 76 days, and adds $3960 to the bottom line each and every year.
The 3rd and final calculator that EXAIR offers online is the most used. It is our Cabinet Cooler System Calculator. Electrical cabinets get hot, and will overheat your electronics. Our Cabinet Coolers are the most efficient method to cool these cabinets, and eliminate electronic damage from overheating. There are no moving parts in these Cabinet Coolers, and the Vortex based system cools these with little to no maintenance. You simply need to supply these with clean, dry, compressed air. As you can imagine, these cabinets come in all sizes, and there are all sorts of various electronics that can be inside of these. We need the measurements and temperatures so that we can calculate the correct size Cabinet Cooler system for you. Our Cabinet Coolers have large size differences, from as little as 4 SCFM and 275 Btu/hr, up to 80 SCFM and 5600 Btu/hr, and we can go larger than this if necessary. The good thing about this calculator is that all of the information you need to enter is readily available to you as long as you have a a tape measure and a thermometer.
We do encourage everyone to take advantage of these on-line tools, however always remember that experienced application engineers like me, are here M-F 7AM-4PM EST to help you in any way possible.
Thank you for stopping by,
Brian Wages
Application Engineer
EXAIR Corporation Visit us on the Web Follow me on Twitter
Compressed air can be one of the more expensive utilities to use in a facility, but a compressed air system is full of simple opportunities to increase efficiency and minimize the cost. Much like how you can take multiple steps to save electricity at your house there a few simple steps you can take to save your compressed air. These steps include finding and repairing leaks, compressor maintenance, minimizing pressure at the point of use, and turning the compressed air off when not in use. Implementing these steps and using the right tools to achieve them can lead to significant dollar savings – in fact our website case studies, other blog articles and catalog are filled with example after example of air (and dollar) savings success! And let’s be honest here, who doesn’t like saving money.
First off is finding your leaks. Leaks are one of the major wastes of compressed air in a system that could happen. Leaks in a compressed air system can account for wasting 20-30% of a compressors output. These leaks can commonly be found in pipe joints, devices that use the compressed air, quick connect fittings, and storage tanks. All of this compounds to wasting air much like a leaky faucet wastes water – little by little it grows until it simply needs to be addressed. One of the ways to help find leaks in your system is EXAIR’s affordable Ultrasonic Leak Detector. This leak detector uses ultrasonic waves to detect where costly leaks can be found so that they can be patched or fixed.
EXAIR Ultrasonic Leak Detector
Choose efficient end-use products. Engineered air knives, air amplifiers, air nozzles and safety air guns can dramatically outperform (use less air) than commercial air nozzles and in-house solutions such as drilled pipes, open air lines and other creative “fixes”. We have seen some very nice in-house solutions from customers who have put in some significant time and effort, but they all have one thing in common – they use more air than any of EXAIR’s engineered solutions.
Minimizing your pressure can also save you money by limiting the amount of compressed air that is being used. Pressure and volume go hand and hand, the higher the pressure the higher the volume of air and vice versa. By minimizing the pressure that you are using you are also minimizing the amount of air that is being used which means savings. Each CFM used can be associated with a certain price value so the less you use the more you save. You also cut down on the amount of work the compressor has to do and how often the compressor has to cycle. Pressure can be minimized using one of EXAIR’s Pressure Regulators to cut down on the amount of air being used.
EXAIR’s Pressure Regulators come in 4 different sizes
Turn off the compressed air when it is not in use. Just like how you wouldn’t leave the faucet running or lights on in a room that is not being used, don’t leave your compressed air running (insert bad dad joke). Constantly using compressed air even when not in use will cause the compressor to cycle more often wasting money. Each CFM has a price to it so don’t waste CFM’s blowing it back into the air and doing nothing. This can simply be done by adding one of EXAIR’s ball valve or solenoid valves to turn off when you are done using it. Also, if you want to take it another step farther you can look at using one of EXAIR’s Electronic Flow Controllers (EFC). The EFC uses a photo eye attached to a timer that will open a solenoid valve for a set amount of time when it detects an object within 3’ of the photo eye. This will turn the air on only when your product is in the air path and turn it off during any spaces in between.
EXAIR’s EFC in use
Compressor maintenance is another important step to minimizing the cost of compressed air. Neglected air compressors can cause a lot of issues ranging from expensive repairs to a decreases in efficiency. Wear and tear placed on the motor of an air compressor can cause the compressor to produce less compressed air (SCFM) at the same power consumption. This means you are paying the same amount of money and getting less out of it. Making sure that your compressor or any machine is always running at its optimal performance and should always be a priority for any facility.
There are many different ways to save on compressed air, these are just a few of them. Reducing air use will save money and reduce the demand on your compressor which in turn can prolong the life of your air compressor. If you have questions about how to save on compressed air or any of our engineered Intelligent Compressed Air® Products, feel free to contact EXAIR or any Application Engineer.
Cody Biehle Application Engineer EXAIR Corporation Visit us on the Web Follow me on Twitter Like us on Facebook
A food manufacturing company was looking for a more efficient way to dry polypropylene trays that were filled with food product. With their current operation, they would send already packed and sealed food trays through a washing system that used sterilized water. The trays would then have to be dried prior to bulk packaging. The operators would place the trays side by side on a 24” wide open-mesh stainless steel metal conveyor with two or three trays at a time (depending on the tray dimensions). They contacted EXAIR because they wanted to replace their “old and inefficient system” with something better.
In my discussions, they gave some additional details of the operation and the problems that they were seeing. The dimensions of the trays ranged from 150 to 200mm long by 100 to 150mm wide by 35 to 50mm in height. They were cleaning at a rate of 30 trays per minute through the washing and drying system. The washer was designed to recycle the water to improve “green” operations. But the trays were carrying much of the water outside the machine. Thus, they would have to stop and refill the wash system with fresh water.
After the washing cycle, the drying section began. It consisted of two parts; a sponge roller and a heated chamber that would blow hot air. First the trays would run under the sponge roller to absorb the water from the top of the trays. A feature that they did not like was the continuous adjustment to the sponge roller for the different tray heights. They had to make sure that they had good contact without stopping the movement.
Also, with bulk of the water being on top of the trays, the sponge surface would get saturated. They would have to stop the process to change with a dry foam pad or replace due to wear. After the sponge roller, it would move into a heated chamber to remove the remaining portion of the water from the trays. They used a 11 KW heating system to blow hot air. This part of their system required a lot of electricity to run. They wondered if EXAIR could help streamline their process and reduce energy costs.
They sent a photo of their system, reference above. As described, the trays were moving intermittently through the wash cycle and then into the drying operation. When gaps are present in a process, the Electronic Flow Control, or EFC, becomes a great product for energy efficiency. It is designed to use a photoelectric sensor to detect a part and initiate a timing sequence. Using a solenoid valve, it will turn on the compressed air only when needed. With the drying operation, I suggested that they could remove the sponge roller and heated chamber, and replace them with two Super Air Knives. In conjunction with the EFC, we can decrease energy usage, reduce downtime, and increase savings. Profit margins can be critical in the food industry, and EXAIR has many ways to help.
Electronic Flow Control
To expand a bit more about revitalizing the “old and inefficient system” with EXAIR products, I made some suggestions. I recommended two Stainless Steel Super Air Knife Kits, model 110224SS, to be placed near the end of the conveyor. One Super Air Knife would be positioned above the tray to blow across the top; and one would be positioned below the tray under the mesh conveyor to blow across the bottom.
At a slight blowing angle in a counter-flow direction, the air streams would remove the water from the top and bottom of the tray at the same time. This would create a non-contact “wiping” solution. Now they do not have to worry about parts wearing out due to contact. Another unique feature of the Super Air Knife is the strength of the laminar air stream. It is consistent from 3” (76mm) to 12” (305mm) away from the target. Thus, they can easily set the height of the Super Air Knives to dry all the different trays without adjusting it.
And as an added benefit, the water that was being blown off the trays by the Super Air Knives remained within the washing system. The sterilized water was not being wasted and could be recycled. With the Electronic Flow Control, I recommended the model 9056. It is a user-friendly device with eight different timing sequences. They were able to position the photoelectric sensor near the outlet of the washing system. As soon as the trays were detected, the Super Air Knives would turn on to blow two or three trays at the same time. With the EXAIR products installed, the system went from using 11 KW down to 4 KW, a 63% savings.
EXAIR has helped many customers like this one above. When it comes to energy savings, EXAIR leads the way. With two Super Air Knives and an EFC, we were able to modernized their system; save on water, improve productivity, reduce the overall footprint, and save on their energy usage. If you have a similar application, you can contact an Application Engineer at EXAIR. We will be happy to update your system.
John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb