EXAIR’s Calculator Library

If there is one thing you can always count on it’s a good calculator, and EXAIR offers you 3 — right on our website!!! The calculator library consists of an Air Savings Calculator, an EFC Calculator, and a Cabinet Cooler sizing calculator. All 3 of these add exceptional value and insight into our products. Let’s take a minute and look at each of these calculators in a little more detail.

The Air Saving Calculator allows you to compare a current product, to one of our products based upon overall cost. In order to make this effective for you, you will need to know the SCFM that your current solution is using. With that information, we can factor in the cost of our product and the SCFM consumption of this new solution, and give you an Air and Cost savings number. For example, if you are using a 1/4″ open pipe for blow off, you would be using @ 40 SCFM (not going to mention the OSHA violations – that’s for another blog). By placing one of our Super Air Nozzles on this open pipe, we will save you so much air (SCFM) that you can quickly see (above) that this one nozzle, can save you up to $1350 per year… One Nozzle!!!

The next calculator is the EFC calculator. An EFC is an Electronic Flow Control that can help you quickly automate your process. The EFC will allow you to use air only when it’s necessary and cut down on consumption. For example, if your conveyor has dead space between products, the EFC will shut the air flow off during the dead space. The calculator will tell you how much money you can save by installing the EFC. This will even tell you how long it will take to pay off the initial cost of the EFC unit. To use this calculator you will need the SCFM being consumed, the % of time that the product needs to be on, the purchase price of the EFC (this varies by size, call for details, or see on the link), and your cost of compressed air. We have $0.25 in this blank as a general standard, but if you know your actual, you will get a more concise answer. Your cost could be much higher, I’d be surprised if it is lower. The Example to the left shows the effects of a $1200 EFC that runs a product at 80 SCFM, and needs to be on 45% of the day. The EFC turns off the air the other 55% of the day when there is no reason to run the air. This pays for itself in 76 days, and adds $3960 to the bottom line each and every year.

The 3rd and final calculator that EXAIR offers online is the most used. It is our Cabinet Cooler System Calculator. Electrical cabinets get hot, and will overheat your electronics. Our Cabinet Coolers are the most efficient method to cool these cabinets, and eliminate electronic damage from overheating. There are no moving parts in these Cabinet Coolers, and the Vortex based system cools these with little to no maintenance. You simply need to supply these with clean, dry, compressed air. As you can imagine, these cabinets come in all sizes, and there are all sorts of various electronics that can be inside of these. We need the measurements and temperatures so that we can calculate the correct size Cabinet Cooler system for you. Our Cabinet Coolers have large size differences, from as little as 4 SCFM and 275 Btu/hr, up to 80 SCFM and 5600 Btu/hr, and we can go larger than this if necessary. The good thing about this calculator is that all of the information you need to enter is readily available to you as long as you have a a tape measure and a thermometer.

We do encourage everyone to take advantage of these on-line tools, however always remember that experienced application engineers like me, are here M-F 7AM-4PM EST to help you in any way possible.

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

Cover photo by Peggy_Marco licensed by Pixabay

What’s So Great About Air Entrainment?

Air entrainment is the phenomenon that occurs when air (or any gas) under pressure is released from a device in such a way that a low pressure is generated in the immediate area of the air (or gas) discharge.  Air (or gas) from the surrounding environment is then pulled (or entrained) into the discharged air stream, increasing its volumetric flow rate.  EXAIR Corporation has been engineering & manufacturing compressed air products to take maximum advantage of this phenomena since 1983…and we’ve gotten better & better at it over the past 36 years.

Obviously, the first thing that’s so great about air entrainment is…free air flow.  Every cubic foot that’s entrained means that’s a cubic foot that your compressor didn’t have to spend energy compressing.  Considering the EXAIR Super Air Knife’s entrainment ratio of 40:1, that makes for a VERY efficient use of your compressed air.

Another thing that’s so great about air entrainment is…it’s quiet.  As you can see from the graphic at the top of this blog, the Super Air Knife entrains air (the lighter, curved blue arrows) into the primary compressed air stream (the darker, straight blue arrows) from above and below.  The outer layers of the total developed flow are lower in velocity, and serve as a sound-attenuating boundary layer.  The sound level of a Super Air Knife (any length…here’s why) is only 69dBA.  That means if you’re talking with someone and a Super Air Knife is running right next to you, you can still use your “inside voice” and continue your conversation, unaffected by the sound of the air flow.

I always thought it would be helpful to have more than just a graphic with blue arrows to show the effect & magnitude of air entrainment.  A while back, I accidentally stumbled across a stunning visual depiction of just that, using a Super Air Knife.  I had the pleasure of talking with a caller about how effective a Super Air Knife might be in blowing light gauge paperboard pieces.  So I set one up in the EXAIR Demo Room, blowing straight upwards, and tossed paper plates into the air flow.  It worked just as expected, until one of the paper plates got a little closer to the Super Air Knife than I had planned:

As you can see, the tremendous amount of air flow being entrained…from both sides…was sufficient to pull in lightweight objects and ‘stick’ them to the surface that the entrained air was being drawn past.  While it doesn’t empirically prove the 40:1 ratio, it indisputably demonstrates that an awful lot of air is moving there.

If you’re looking for a quiet, efficient, and OSHA compliant solution for cleaning, blow off, drying, cooling…anything you need an even, consistent curtain of air flow for – look no further than the EXAIR Super Air Knife.  If you’d like to discuss a particular application and/or product selection, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Adjustable E-Vac Saves Coolant

Many EXAIR Corporation blogs could use this formula as the title:

[EXAIR Intelligent Compressed Air Productsaves  [valuable commodity in customer’s facility]

Popular examples might be:

But how exactly does an Adjustable E-Vac Vacuum Generator save coolant?  Isn’t that what the Chip Trapper Systems do?  (It is, and that’s been covered extensively here, here, and-my personal favorite-here.)

Our E-Vac Vacuum Generators are probably most commonly used in pick-and-place applications, in conjunction with our Vacuum Cups.

From a lightweight manual operation to an automated system with large or heavy objects, the EXAIR E-Vac Vacuum Generators can solve the application.

The Adjustable E-Vacs, however, have a unique feature – a relatively large throat diameter – that makes them well suited for suctioning up liquids.  And I recently had the pleasure of helping a caller with just such an application.  They make machinery for the automotive industry, and in one particular operation, coolant gets left behind in ‘pockets’ of a particularly unwieldy piece.  They can drain most of it at the machine, but what gets left behind in these pockets makes a real mess as it goes to the next fabrication point, and, although it’s a small amount in each pocket, it adds up to a finite amount of wasted coolant.  It’s not practical to use an electric shop vacuum, but an operator could easily use a handheld device to suck up these little puddles.

Enter the Adjustable E-Vac…with the wide throat diameter I mentioned above and compact design, they were able to install a short suction hose (via a threaded push-in connector) to the vacuum port, and a little longer discharge hose to the exhaust port, and they have a quick and easy, portable, maneuverable coolant transfer system.  Here’s a short video I made in the Demo Room, once upon a time, showing how it works:

Saving air.  Saving coolant.  Saving money and time, one compressed air application at a time.  If you have one you’d like to discuss, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Six Steps to Optimization, Step 4 – Turn Off Your Compressed Air When Not in Use

Step 4 of the Six Steps To Optimizing Your Compressed Air System is ‘Turn off the compressed air when it isn’t in use.’  Click on the link above for a good summary of the all the steps.

6 Steps from Catalog

Two basic methods to set up a compressed air operation for turning off is the ball valve and the solenoid valve. Of the two, the simplest is the ball valve. It is a quarter turn, manually operated valve that stops the flow of the compressed air when the handle is rotated 90°. It is best for operations where the compressed air is needed for a long duration, and shut off is infrequent, such as at the end of the shift.

manual_valves (2)
Manual Ball Valves, from 1/4 NPT to 1-1/4 NPT

The solenoid valve offers more flexibility. A solenoid valve is an electro-mechanical valve that uses electric current to produce a magnetic field which moves a mechanism to control the flow of air. A solenoid can be wired to simple push button station, for turning the air flow on and off – similar to the manual valve in that relies on a person to remember to turn the air off when not needed.

wa_solvalv
A Wide Array of Solenoid Valve Offerings for Various Flows and Voltage Requirements

Another way to use a solenoid valve is to wire it in conjunction with a PLC or machine control system. Through simple programming, the solenoid can be set to turn on/off whenever certain parameters are met. An example would be to energize the solenoid to supply an air knife when a conveyor is running to blow off parts when they pass under. When the conveyor is stopped, the solenoid would close and the air would stop blowing.

The EXAIR EFC (Electronic Flow Control) is a stand alone solenoid control system. The EFC combines a photoelectric sensor with a timer control that turns the air on and off based on the presence (or lack of presence) of an object in front of the sensor. There are 8 programmable on/off modes for different process requirements. The use of the EFC provides the highest level of compressed air usage control. The air is turned on only when an object is present and turned off when the object has passed by.

efcapp
EFC Used To Control Bin Blow Off Operation

By turning off the air when not needed, whether by a manual ball valve, a solenoid valve integrated into the PLC machine control or the EXAIR EFC, compressed air usage will be minimized and operation costs reduced.

If you have questions about the EFC, solenoid valves, ball valves or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB