What’s So Great About Air Entrainment?

Air entrainment is the phenomenon that occurs when air (or any gas) under pressure is released from a device in such a way that a low pressure is generated in the immediate area of the air (or gas) discharge.  Air (or gas) from the surrounding environment is then pulled (or entrained) into the discharged air stream, increasing its volumetric flow rate.  EXAIR Corporation has been engineering & manufacturing compressed air products to take maximum advantage of this phenomena since 1983…and we’ve gotten better & better at it over the past 36 years.

Obviously, the first thing that’s so great about air entrainment is…free air flow.  Every cubic foot that’s entrained means that’s a cubic foot that your compressor didn’t have to spend energy compressing.  Considering the EXAIR Super Air Knife’s entrainment ratio of 40:1, that makes for a VERY efficient use of your compressed air.

Another thing that’s so great about air entrainment is…it’s quiet.  As you can see from the graphic at the top of this blog, the Super Air Knife entrains air (the lighter, curved blue arrows) into the primary compressed air stream (the darker, straight blue arrows) from above and below.  The outer layers of the total developed flow are lower in velocity, and serve as a sound-attenuating boundary layer.  The sound level of a Super Air Knife (any length…here’s why) is only 69dBA.  That means if you’re talking with someone and a Super Air Knife is running right next to you, you can still use your “inside voice” and continue your conversation, unaffected by the sound of the air flow.

I always thought it would be helpful to have more than just a graphic with blue arrows to show the effect & magnitude of air entrainment.  A while back, I accidentally stumbled across a stunning visual depiction of just that, using a Super Air Knife.  I had the pleasure of talking with a caller about how effective a Super Air Knife might be in blowing light gauge paperboard pieces.  So I set one up in the EXAIR Demo Room, blowing straight upwards, and tossed paper plates into the air flow.  It worked just as expected, until one of the paper plates got a little closer to the Super Air Knife than I had planned:

As you can see, the tremendous amount of air flow being entrained…from both sides…was sufficient to pull in lightweight objects and ‘stick’ them to the surface that the entrained air was being drawn past.  While it doesn’t empirically prove the 40:1 ratio, it indisputably demonstrates that an awful lot of air is moving there.

If you’re looking for a quiet, efficient, and OSHA compliant solution for cleaning, blow off, drying, cooling…anything you need an even, consistent curtain of air flow for – look no further than the EXAIR Super Air Knife.  If you’d like to discuss a particular application and/or product selection, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Fluidics, Boundary Layers, And Engineered Compressed Air Products

Fluidics is an interesting discipline of physics.  Air, in particular, can be made to behave quite peculiarly by flowing it across a solid surface.  Consider the EXAIR Standard and Full Flow Air Knives:

Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces serve to optimize the entrainment of air (4) from the surrounding environment.

If you’ve ever used a leaf blower, or rolled down the car window while traveling at highway speed, you’re familiar with the power of a high velocity air flow.  Now consider that the Coanda effect can cause such a drastic redirection of this kind of air flow, and that’s a prime example of just how interesting the science of fluidics can be.

EXAIR Air Amplifiers, Air Wipes, and Super Air Nozzles also employ the Coanda effect to entrain air, and the Super Air Knife employs similar precision engineered surfaces to optimize entrainment, resulting in a 40:1 amplification ratio:

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

As fascinating as all that is, the entrainment of air that these products employ contributes to another principle of fluidics: the creation of a boundary layer.  In addition to the Coanda effect causing the fluid to follow the path of the surface it’s flowing past, the flow is also affected in direct proportion to its velocity, and inversely by its viscosity, in the formation of a boundary layer.

High velocity, low viscosity fluids (like air) are prone to develop a more laminar boundary layer, as depicted on the left.

This laminar, lower velocity boundary layer travels with the primary air stream as it discharges from the EXAIR products shown above.  In addition to amplifying the total developed flow, it also serves to attenuate the sound level of the higher velocity primary air stream.  This makes EXAIR Intelligent Compressed Air Products not only as efficient as possible in regard to their use of compressed air, but as quiet as possible as well.

If you’d like to find out more about how the science behind our products can improve your air consumption, give me a call.