Sound Power Vs Sound Pressure

EXAIR Intelligent Compressed Air Product dBA ratings as compared to other sounds

When trying to explain or state a number associated with how loud a sound or noise is it can be somewhat confusing or at the very least, ambiguous.  This blog will help to make it clear and easy to understand the difference between Sound Power and Sound Pressure.

Sound Power is defined as the speed at which sound energy is radiated or transmitted for a given period of time.  The SI unit of sound power is the watt. It is the power of the sound force on a surface of the medium of propagation of the sound wave.

Sound Pressure is the sound we hear and is defined as the atmospheric pressure disturbance that can vary by the conditions that the sound waves encounter such as furnishings in a room or if outdoors trees, buildings, etc.  The unit of measurement for Sound Pressure is the decibel and its abbreviation is the dB.

I know, the difference is still clear as mud!  Lets consider a simple analogy using a light bulb.  A light bulb uses electricity to make light so the power required (stated in Watts) to light the bulb would be the “Sound Power” and the light generated or more specific the brightness is the “Sound Pressure”.  Sound just as with the light emitting from the bulb diminishes as the distance increases from the source.  Skipping the math to do this, it works out that the sound decreases by 6 dB as the distance from the sound source is doubled.  A decrease of 3dB is half as loud (Sound Pressure) as the original source.  As an example sound measured at 90 dB @ 36″ from the source would be 87dB at 54″ from the sound source or 84dB at 72″.

We at EXAIR specialize in making quiet and efficient point of use compressed air products, in fact most of our products either meet or exceed OSHA noise standards seen below.

OSHA Noise Level

EXAIR also offers the model 9104 Digital Sound Level Meter.  It is an easy to use instrument for measuring and monitoring the sound level pressures in and around equipment and other manufacturing processes.

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR or any Application Engineer.

Steve Harrison
Application Engineer

Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook


Super and Adjustable Type Air Amplifiers

The EXAIR Air Amplifiers are a powerful, efficient and quiet air mover, whose power can be harnessed for blowoff, cooling and ventilation applications. Using a small amount of compressed air, air amplifiers pull in large amounts of surrounding air to produce a high volume, high velocity outlet flow.  Quiet and efficient, output flows with amplification ratios of up to 25 times are possible. There are two types, the Super Air Amplifier and the Adjustable Air Amplifier.

The Super Air Amplifier, with sizes ranging from 3/4″ to 8″, has a patented design (patent #5402938) that uses a special shim to maintain critical position of the components parts. It is through this critical gap setting that a precise amount of compressed air is passed at exact intervals controlled by the shim toward the center of the of the Super Air Amplifier.  The jets of air create a high velocity flow across the entire cross sectional area, which in turn pulls in large amounts surrounding air, resulting in the amplified outlet flow.  Because the outlet flow remains balanced and minimizes wind shear, sound levels are typically three times lower than other types of air movers. The shims are available in thicknesses of 0.003″ (supplied as standard), 0.006″ and 0.009″, and changing to a larger shim will increase the force and flow of the outlet air. The 8″ Super Air Amplifier is supplied with a 0.009″ shim, with a 0.015″ shim available.

2″ Super Air Amplifier and Patented Shim Design

For high temperature applications (up to 700°F/374°C) a special 1-1/4″ High Temperature Air Amplifier is available, with performance equal to the 1-1/4″ Super Air Amplifier. Its surfaces are protected from heat stress by a mil-spec coating process. The High Temperature Air Amplifier is highly effective at pushing large amounts of hot air to areas that typically remain cool.

The Adjustable Air Amplifier, with sizes ranging from 3/4″ to 4″, does not use a shim, and has an infinitely adjustable air gap, which regulates the air consumption and outlet flow from a light breeze to a powerful blast. A highly effective air mover, it can be tailored to meet the exact air flow and force of your specific application. They are available in aluminum and in stainless steel (Type 303) for food service, higher temperatures (400°F/204°C) and corrosive environments.

2″ Adjustable Air Amplifier, in Aluminum or Stainless Steel

Force and flow of the Adjustable Air Amplifier is changed by loosening the knurled lock ring and turning the exhaust end to open or close the gap.  Once the desired force and flow is achieved, the knurled ring can be tightened to lock the device at the current setting. Typically, an air gap of 0.002″ to 0.004″ provides the required performance.

The table below summarizes the key features of the Super Air Amplifier and Adjustable Air Amplifier.  Please contact an Application Engineer if you need assistance in making a selection.

Air Amp Selection Chart

Note that EXAIR can manufacture special Air Amplifiers to your specification including special flanged mounting style or with a PTFE plug to avoid sticky material build up.

To discuss your application and how a Super or Adjustable Air Amplifier or any EXAIR Intelligent Compressed Air Product can improve your process, feel free to contact EXAIR, myself, or one of our other Application Engineers. We can help you determine the best solution!

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Two Types of Air Amplifiers – Volume and Pressure

When the topic of Air Amplifiers comes up, there are two avenues to consider –  is it the air pressure or the air volume that you wish to amplify?  There exists technologies to amplify either parameter, and we will examine them both.

There may be equipment or processes within a facility that operate best at air pressures higher than can be delivered, due to air compressor limitations or the supply system. An Air Pressure Amplifier can take the existing compressed air supply, and boost the pressure allowing for the higher needed air pressure without requiring a dedicated compressor capable of operating at the higher pressure.

An Air Pressure Amplifier is basically an air pump, driven by a portion of the compressed air supply.  The pump cycles and compresses the remaining amount of compressed air to a higher outlet pressure. This higher output pressure can be used to operate the equipment or process that required the pressure levels that the base system could not supply. The drawback is that the pump system consumes a good amount of the compressed air volume, to power the pump which reduces the amount of air available for other equipment or processes.  This drives up the compressed air consumption for the system, and requires the extra capacity to operate.

The other type of Air Amplifier is the kind that amplifies the air flow volume. EXAIR manufactures this type of amplifier.


The air flow amplification works by taking compressed air (1) and directing into an annular chamber (2). It is then throttled through a small ring nozzle (3) at high velocity. This primary stream of air adheres to the Coanda profile (4) and is directed through the outlet. A low pressure area is created at the center, inducing a high volume flow (5) of surrounding air to be drawn in and added to the main air stream. The combined flow of primary and surrounding air exits as a high volume, high velocity flow.


EXAIR manufactures (2) types of Air Amplifiers, the Super Air Amplifier and the Adjustable Air Amplifier.  In addition, a special model for High Temperature applications is available.  Sizes range from 3/4″ (19mm) to 8″ (203mm) to meet most air flow requirements.  Air amplification ratios start at 12:1 for the 3/4″ model and increase to 25:1 for the 4″ and 8″ models.

Charts and tables are available to help determine the right Air Amplifier for the job.

If you have questions about the Air Amplifiers, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Super Air Amplifiers – Adjustability for Blowoff, Drying, Cooling, Circulation and Ventilation

The Super Air Amplifier is a powerful, efficient, and quiet air mover. Applications currently in place include blowoff, drying, cooling, circulation and ventilation. Sizes from 3/4″ to 8″ are available to best match the air volume that is necessary to achieve the process goals. There are a couple of ways to change the performance of the Super Air Amplifier if either a small or large change to the output flow is required.AirAmplifiers

The chart below shows the Total Output Flow for each of the 6 models. As an example, the Model 120021 or 121021, when operated at 60 PSIG of compressed air supply, will have a total output flow of 120 SCFM. These same devices when operated at 80 PSIG will have a total flow of 146 SCFM. By simply using a pressure regulation device on the compressed air supply, the output performance can be tuned to match the desired outcome.


For those applications where much greater flow and/or force is needed, the option of installing a thicker shim is available.  The Super Air Amplifiers are supplied with a 0.003″ shim installed (the 8″ model 120028, has a 0.009″ shim as standard) and can be fitted with shims of thicknesses of 0.006″ or 0.009″ (the 8″ model has an optional 0.015″ shim.) Installation of a thicker shim increases the slotted air gap, allowing for a greater amount of controlled air flow.  As a general rule, doubling the shim thickness will double the air flow rates.

Super Air Amplifier Shims
Patented* Shim Design for Super Air Amplifiers

The Super Air Amplifier design provides for a constant, high velocity outlet flow across the entire cross sectional area,.  The balanced outlet flow minimizes wind shear to produce sound levels that are typically three times quieter than other air movers. By regulating the compressed air supply pressure and use of the optional shims, adjustability and flexibility of the unit is wide ranging and sure to meet your process needs.

If you have questions regarding the Super Air Amplifier, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

*Patent #5402938

Air Amplifiers – What is an Amplification Ratio?

On Friday my colleague, Russ, blogged about the Super Air Amplifier (see that BLOG here, including a video demo)  In discussing the Air Amplifiers, the topic of amplification was mentioned. Today, I’d like to expand a bit further the amplification aspect of the Air Amplifier performance.

As the name of the device implies, the compressed air used by the Air Amplifier is added to, and thus ‘amplified’, the total output flow of the unit. Depending on the size and type of Air Amplifier, the amplification ratio starts at 12:1 and goes up to 25:1, with the ratio being the output flow to the compressed air usage.

Super Air Amplifier and Adjustable Air Amplifier

EXAIR offers (2) types- the Super Air Amplifier and the Adjustable Air Amplifier.  The Super Air Amplifier uses a patented shim technology to maintain a precise gap, which controls the compressed air flow and expansion through the unit.  As the expanded air flows along the Coanda profile, a low pressure area is created at the center which induces a high volume flow of surrounding air into the primary air-stream.  The combined flow of primary and surrounding air exhausts from the Air Amplifier in a high volume, high velocity flow.  The larger diameter units have a greater cross sectional area with larger low pressure areas, resulting in greater amplification ratios.

The Below table shows the amplification ratios.


The Adjustable Air Amplifier does not use a shim, but rather has an infinitely adjustable gap, allowing for fine adjustment of performance.  Force and flow is changed by turning the exhaust end to adjust the gap, and is then locked into place. The method of the amplification is the same as for the Super Air Amplifier, and the amplification ratios are similar and shown below.


The Super Air Amplifiers and Adjustable Air Amplifiers are ideal for use in applications and processes that require cooling, drying and/or cleaning of parts, or the ventilation of confined areas or weld smoke or the exhausting of tank fumes.

If you have questions regarding the Air Amplifier, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

What’s So “Super” About The Super Air Amplifier?

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of free air from the surrounding environment.

“Free air” from the surrounding environment?  You might think it’s too good to be true, and if you think you’re getting something for nothing, you’re right.  If you consider, though, that it’s oftentimes preferable to work smarter, not harder, then the use of engineered compressed air products is too good NOT to be true.  Case in point: the Super Air Amplifier.

The Coanda Effect is the “work smarter, not harder” part of the Super Air Amplifier

Simple and low cost, (hey, “engineered” doesn’t necessarily mean “complex and expensive”) the EXAIR Super Air Amplifier uses a small amount of compressed air to generate a tremendous amount of air flow through entrainment.  How much do they pull in?  Depending on the model, they entrain air at rates of 12:1 (for the 3/4″ Model 120020) to 25:1 (4″ & 8″ Models 120024 & 120028, respectively.)  The larger diameters mean there’s more cross sectional area to entrain air, so there is indeed efficiency to scale, size-wise.  There are a couple of great visuals in this video, if you want to see the entrainment in action (1:50) or the difference that the entrainment makes (1:30):


Where can you use a Super Air Amplifier?  The easy answer is, anyplace you want a consistent, reliable air flow.  The pressure supply can be regulated from a “blast to a breeze,” depending on the needs of your application.  The patented shim can be replaced for even higher performance, while maintaining the efficiency that makes it so valuable.  The balanced flow makes for incredibly quiet operation…no more noisy fans, blowers, or open-end compressed air pipes.  The body (3/4″ to 4″ sizes) is cast with a 2-hole flange for ease of installation.

When can you use a Super Air Amplifier?  Another easy answer: anytime you want.  If you need a continuous air flow, there are no moving parts to wear or electrical components to burn out.  Supply them clean, dry air, and they’ll run darn near indefinitely, maintenance free.

Alternately, if you need intermittent air flow, starting & stopping operation is as simple as opening & closing a valve in the compressed air supply line.  They produce rated flow immediately, and cut it off just as fast.

Some of the more popular applications are ventilation/exhaust, cooling, drying, cleaning, and dust collection.  There are five distinct models to choose from, and they’re all in stock.  We’re also happy to discuss special requirements that might lead to a custom product too.  Our Application Engineers work with Design & Production all the time to meet specific needs of particular situations.

If you’d like to find out more about letting the Super Air Amplifier, or any of EXAIR’s Intelligent Compressed Air Products work smarter for you, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

OSHA Standard 1910.242(b) – Dead-End Pressure and Chip Guarding Explained

OSHA Standard 1910.242(b) discusses the use of compressed air for cleaning and blowoff. It states that the use of compressed air for cleaning purposes is prohibited if the dead-ended pressure exceeds 30 psig. This phrase means the downstream pressure of the air nozzle or gun, used for cleaning purposes, will remain at a pressure level below 30 psig for all static conditions. In the event that dead ending occurs, the static pressure at the main orifice shall not exceed 30 psi. If it does exceed this pressure, there is a very high potential for it to create an air embolism. An air embolism, left untreated, can quickly impede the flow of blood throughout the body. This can lead to stroke, heart attack, and sometimes death. Take a look at the animation below to see how an air embolism can affect the body.

With this in mind, there are only two options for staying within compliance of this standard. Either install an engineered solution that will reduce the air pressure to less than 30 psig if dead-ended, or regulate the pressure below 30 psig. For the vast majority of operations, regulating the input pressure below 30 psig is useless. The force and flow from the nozzle at this pressure is greatly reduced and likely not enough to be effective in most applications. All of EXAIR’s Safety Air Guns are designed so that the flow cannot be dead-ended. The fins on the Super Air Nozzles are not only useful in amplifying the force by drawing in ambient air, but they also prevent an operator from completely obstructing the airflow.

The fins of the Super Air Nozzle allow air to escape and prevent dead-end pressure from exceeding 30 psig.

In addition to being concerned about dead-end pressure, OSHA 1910.242(b) also states that compressed air used for cleaning should include effective chip guarding. By this, they mean that some method or equipment must be installed that will prevent chips and particles from coming back into the eyes or skin of the operator. In addition to offering OSHA compliant nozzles and guns, EXAIR also has Chip Shields that can be installed onto any of our Safety Air Guns. The polycarbonate shields protect the operator from any flying debris while performing a drying or blowoff operation. Simply add a “-CS” to the end of any Safety Air Gun Model number to have a Chip Shield installed on the gun.

EXAIR’s Model 1210-PEEK-CS with Chip Shield

The Occupational Safety and Health Act of 1970 does not contain any provisions that allow for the approval or endorsement of equipment. Alteration or the misapplication of what was once a safe piece of equipment would create a dangerous scenario that is out of the control of the original manufacturer. Any nozzles or guns marketed as “OSHA approved” should immediately throw up a red flag. Identifying and implementing a safe, OSHA compliant solution rests in the hands of the manufacturer themselves. If you’ve got questions about compressed air safety or have an existing blowoff in place that does not adhere to this OSHA directive, give us a call. We’ll be sure to recommend a solution that will keep your operators and wallets safe!

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD