People of Interest: Robert Boyle – January 25, 1627 – December 31, 1691

Robert Boyle was born on January 25, 1627 in Lismore Castle, County of Waterford, Ireland.  He was an Anglo-Irish natural philosopher, chemist, physicist and dabbled in many other areas of study. He published the book The Sceptical Chymist in 1661, and many consider him and his work as the foundation of modern chemistry.  He was a very devout Anglican, and published numerous works in this area as well.

Robert Boyle

One of Boyle’s most famous discoveries was to become the first of the gas laws, relating the pressure of a gas to its volume. With Robert Hooke, a young university student as his laboratory assistant, Boyle began experimenting with air.  Together they made their first great discovery, now known as Boyle’s Law.

J-Tube 2
Boyle used a ‘J’ Tube – Sealed on the Short End, and Open at the Long End

The experiment was performed using a ‘J’ shaped glass tube sealed on the shorter leg, and open to atmosphere on the longer leg.  Quicksilver (mercury) was poured into the tube, such that the level was equal on each side. The volume of the trapped air was noted. Additional mercury was poured into the tube and it was observed that the mercury did not stay level, and measurements of the heights on each tube leg were recorded.  The height difference of the mercury is effectively a measure of the pressure of the trapped air. Boyle, through the experiment and the data,  discovered a relationship between the volume and the pressure of air.  The data as published, is shown below.

Boyle's Data

Boyle noticed the pressure times the volume of air for the initial condition equaled the pressure times the volume at any other mercury height.

Known as Boyle’s Law – P ∝ 1/V,      pressure is proportional to the inverse of the volume

Alternately, PV = k,       pressure times volume is equal to a constant

For comparing the same substance under two different sets of conditions, the law can be expressed as P1V1 = P2V2

Of note is that Boyle’s Law, combined with Charles’s law and Gay-Lussac’s Law formed the combined gas law, and in combination with Avogadro’s law is the basis for the ideal gas law – PV=nRT, which include temperature, the amount of the substance, and the ideal gas constant to the mix.

It is noted that Boyle credited fellow scientist Richard Towneley for making the connection between the pressure of a gas and volume, but Boyle’s experiments and observations using the ‘J’ tube confirmed Towneley’s predictions, and the rest as they say is history.

If you would like to talk about compressed air or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Experiment Data from the book New Experiments Physico-Mechanicall, Touching the Spring of the Air, and Its Effects (1660)

 

Air: What is it?

Air Balloons

What is Air? Air is an invisible gas that supports life on earth. Dry air is made from a mixture of 78% Nitrogen, 21% Oxygen, and 1% of remaining gases like carbon dioxide and other inert gases.  Ambient air contains an average of 1% water vapor, and it has a density of 0.0749 Lbs./cubic foot (1.22 Kg/cubic meter) at standard conditions.  Air that surrounds us does not have a smell, color, or taste, but it is considered a fluid as it follows the rules of fluid dynamics. But unlike liquids, gases like air are compressible.  Once we discovered the potential of compressing the surrounding air, we were able to advance many technologies.

Bellows

Guess when the earliest air compressor was used?  Believe it or not, it was when we started to breathe air.  Our diaphragms are like compressors.  It pulls and pushes the air in and out of our lungs.  We can generate up to 1.2 PSI (80 mbar) of air pressure.  During the iron age, hotter fires were required for smelting.  Around 1500 B.C., a new type of air compressor was created, called a bellows.  You probably seen them hanging by the fireplaces.  It is a hand-held device with a flexible bag that you squeeze together to compress the air.  The high stream of air was able to get higher temperature fires to melt metals.

Then we started to move into the industrial era.  Air compressors were used in mining industries to move air into deep caverns and shafts.  Then as the manufacturing technologies advanced, the requirements for higher air pressures were needed.  The stored energy created by compressing the air allowed us to develop better pneumatic systems for manufacturing, automation, and construction.  I do not know what the future holds in compressed air systems, but I am excited to find out.

Since air is a gas, it will follow the basic rules of the ideal gas law;

PV = nRT  (Equation 1)

P – Pressure

V – Volume

n – Amount of gas in moles

R – Universal Gas Constant

T – Temperature

If we express the equation in an isothermal process (same temperature), we can see how the volume and pressure are related.  The equation for two different states of a gas can be written as follows:

P1 * V1 = P2 * V2  (Equation 2)

P1 – Pressure at initial state 1

V1 – Volume at initial state 1

P2 – Pressure at changed state 2

V2 – Volume at changed state 2

If we solve for P2, we have:

P2 = (P1 * V1)/V2  (Equation 3)

In looking at Equation 3, if the volume, V2, gets smaller, the pressure, P2, gets higher.  This is the idea behind how air compressors work.  They decrease the volume inside a chamber to increase the pressure of the air.  Most industrial compressors will compress the air to about 125 PSI (8.5 bar).  A PSI is a pound of force over a square inch.  For metric pressure, a bar is a kg of force over a square centimeter.  So, at 125 PSI, there will be 125 pounds of force over a 1” X 1” square.  This amount of potential energy is very useful to do work for pneumatic equipment.  To simplify the system, the air gets compressed, stored as energy, released as work and is ready to be used again in the cycle.

Air Compressor

Compressed air is a clean utility that is used in many different applications.  It is much safer than electrical or hydraulic systems.  Since air is all around us, it is an abundant commodity for air compressors to use.  But because of the compressibility factor of air, much energy is required to create enough pressure in a typical system.  It takes roughly 1 horsepower (746 watts) of power to compress 4 cubic feet of air (113L) to 125 PSI (8.5 bar) every minute.  With almost every manufacturing plant in the world utilizing compressed air in one form or another, the amount of energy used to compress air is extraordinary.  So, utilizing compressed air as efficiently as possible is mandatory.  Air is free, but making compressed air is expensive

If you have questions about getting the most from your compressed air system, or would like to talk about any EXAIR Intelligent Compressed Air® Products, you can contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Picture: Hot Air Rises by Paul VanDerWerf. Creative Commons Attribution 2.0 Generic.

Picture: Bellows by Joanna Bourne. Creative Commons Attribution 2.0 Generic.

Picture: Air Compressor by Chris Bartle. Creative Commons Attribution 2.0 Generic.