Don’t Fall Victim To Undersized Piping

Pressure drops, incorrect plumbing, undersized piping, insufficient flow; if you hear these terms from tech support of your point of use compressed air products or from your maintenance staff when explaining why a process isn’t working then you may be a victim of improper compressed air piping selection.
Often time this is due to a continued expansion of an existing system that was designed around a decade old plan. It could also come from a simple misunderstanding of what size of piping is needed and so to save some costs, smaller was used. Nonetheless, if you can understand a small number of variables and what your system is going to be used for, you can ensure the correct piping is used. The variables that you will want to consider when selecting a piping size that will suit your need and give the ability to expand if needed are shown below.

  • Minimum Operating Pressure Allowed (psig) – Lowest pressure permitted by any demand side point of use product.
  • System Pressure (psig) – Safe operating pressure that will account for pressure drops.
  • Flow Rate (SCFM) of demand side (products needing the supplied compressed air)
  • Total Length of Piping System (feet)
  • Piping Cost ($)
  • Installation Cost ($)
  • Operational Hours ( hr.)
  • Electical Costs ($/kwh)
  • Project Life (years) – Is there a planned expansion?

An equation can be used to calculate the diameter of pipe required for a known flow rate and allowable pressure drop. The equation is shown below.

A = (144 x Q x Pa) / (V x 60 x (Pd + Pa)
A = Cross-Sectional are of the pipe bore. (sq. in.).
Q = Flow rate (cubic ft. / min of free air)
Pa = Prevailing atmospheric absolute pressure (psia)
Pd  = Compressor discharge gauge pressure (psig)
V = Design pipe velocity ( ft/sec)

If all of these variables are not known, there are also reference charts which will eliminate the variables needed to total flow rate required for the system, as well as the total length of the piping. The chart shown below was taken from EXAIR’s Knowledge Base.

Once the piping size is selected to meet the needs of the system the future potential of expansion should be taken into account and anticipated for. If no expansion is planned, simply take your length of pipe and start looking at your cost per foot and installation costs. If expansions are planned and known, consider supplying the equipment now and accounting for it if the additional capital expenditure is acceptable at this point.

The benefits to having properly sized compressed air lines for the entire facility and for the long-term expansion goals makes life easier. When production is increased, or when new machinery is added there is not a need to re-engineer the entire system in order to get enough capacity to that last machine. If the main compressed air system is undersized then optimal performance for the facility will never be achieved. By not taking the above variables into consideration or just using what is cheapest is simply setting the system up for failure and inefficiencies. All of these considerations lead to an optimized compressed air system which leads to a sustainable utility.

Brian Farno
Application Engineer

Pressure – Absolute, Gauge, and Units of Both

Compressed air is a common utility used throughout industrial facilities and it has to be measured like any other utility in order to know just how much a facility is using. When dealing with compressed air a common unit of measurement that readily comes up is psi, pound-force per square inch. This unit of measure is one of the most basic units used to measure pressure in the compressed air industry. There are other means to measure this though, so let’s discover the difference.

Again, the pressure is a force distributed over an area, the Earth’s atmosphere has pressure, if it didn’t we would all balloon up like the Violet from Willy Wonka, just without eating some prototype gum causing internal pressure. PSIA is a unit of measure that is relative to a full vacuum. It is pounds per square inch absolute (PSIA). The absolute pressure is calculated as the sum of the gauge pressure plus the atmospheric pressure. If you were to travel into space, the atmospheric pressure would be absolute zero which is actually a vacuum. There is nothing pushing from the outside in so the inside pushes out, hence the ballooning.

The atmospheric pressure on earth is based on sea level. This is 14.7 pounds per square inch absolute pressure. This pressure will change along with the weather and the altitude at which the measurement is taken.

So how do we get to the pressure that is displayed on a pressure gauge?  When shown open to room air, my pressure gauge reads zero psi. Well, that is zero psi gauge, this already has the atmosphere showing. It is not showing the Absolute pressure, it is showing the pressure relative to atmospheric conditions. This is going back to the fact that gauge pressure is the summation of absolute pressure and atmospheric conditions, for sea level on earth that is 14.7 psia. So how do we increase this and get the gauge to read higher levels?

We compress the air the gauge is measuring, whether it is using a screw compressor, dual-stage piston compressor, single-cylinder, or any other type of compressor, it is compressing the ambient, atmospheric air. Some materials do not like being compressed. Air, however, reacts well to being compressed and turns into a form of stored energy that gets used throughout industrial facilities.  By compressing the air, we effectively take the air from atmospheric conditions and squeeze it down into a storage tank or piping where it is stored until it is used. Because the air is being compressed you can fit larger volumes (cubic feet or cubic meters) into a smaller area. This is the stored energy, that air that is compressed always wants to expand back out to ambient conditions. Perhaps this video below will help, it shows the GREAT Julius Sumner Miller explaining atmospheric pressure, lack of it, and when you add to it.

Lastly, no matter where you are, there is a scientific unit that can express atmospheric pressure, compressed air pressure, or even lack of pressure which are vacuum levels. To convert between these scientific units, some math calculations are needed. While the video below is no Julius Sumner Miller, it does a great job walking through many of the units we deal with daily here at EXAIR.


If you want to discuss pressures, atmospheric pressure, how fast the air expands from your engineered nozzle to atmospheric, why all the moisture in the air compresses with it, and how to keep it out of your process, contact an application engineer and we will be glad to walk through the applications and explanations with you.

Brian Farno
Application Engineer

1 – Willy Wonka & the Chocolate Factory – Violet Blows Up Like a Blueberry Scene (7/10) | Movieclips, Movieclips, retrieved from

2 – Lesson 10 – Atmospheric Pressure – Properties of Gases – Demonstrations in Physics,  Julius Sumner Miller, Retrieved from

3 – Pressure Units and Pressure Unit Conversion Explained, Chem Academy, retrieve from


EXAIR NEW Product Offering – Pressure Sensing Digital Flowmeters

Six Steps to Optimizing Your Compressed Air System

The first step to optimizing compressed air systems within an industrial facility is to get a known baseline. To do so, utilizing a digital flowmeter is an ideal solution that will easily install onto a hard pipe that will give live readouts of the compressed air usage for the line it is installed on.  There is also an additional feature that we offer on the Digital Flowmeters that can help further the understanding of the compressed air demands within a facility.

The Pressure Sensing Digital Flowmeters are available from 2″ Sched. 40 Iron Pipe up to 8″ Sched. 40 Iron Pipe.  As well as 2″ to 4″ Copper pipe.  These will read out and with the additional Data Logger or Wireless Capability options record the information. When coupled with the wireless capability an alarm can be set for pressure drops that give live updates on the system as well as permits data review to see trends throughout the day of the system.

EXAIR Digital Flowmeters w/ Wireless Capabilities

Generating a pressure and consumption profile of a system can help to pinpoint energy wasters such as timer-based drains that are dumping every hour versus level based drains that only open when needed. A scenario similar to this was the cause of an entire production line shut down nearly every day of the week for a local facility until they installed flowmeters and were able to narrow the demand location down to a filter baghouse with a faulty control for the cleaning cycle.

If you would like to discuss the best digital flowmeter for your system and to better understand the benefits of pressure sensing, please contact us.

Brian Farno
Application Engineer


Pressure Gauges – Why You Need Them & How They Work

There is hardly a day I work that I am not talking about the importance of properly installed pressure gauges.  These small devices can often get overlooked or thought of as not necessary on an installation.  When troubleshooting or evaluating the compressed air consumption of an application, this is one of the first items I look for in the installation.

As Russ Bowman shows in the above video discussing proper piping sizes, you can see the importance of properly placed pressure gauges.  This shows the worst-case scenario where the pressure drop due to improper line sizes gives the false sense to the operator that they are achieving full line pressure when in fact they are not.  In order to accurately measure consumption rates, pressure AT THE INLET (within a few feet) to any compressed air product is necessary, rather than upstream at a point where there may be restrictions or pressure drops between the inlet and the gauge. So how exactly do these analog gauges measure the pressure of the compressed air at the installed locations?

Pressure Gauge Model 9011

The video below shows a great example of pressure increasing and decreasing moving the Bourdon tube that is connected to the indicating needle.  The description that follows goes more in-depth with how these internals function.

Most mechanical gauges utilize a Bourdon-tube. The Bourdon-tube was invented in 1849 by a French watchmaker, Eugéne Bourdon.  The movable end of the Bourdon-tube is connected via a pivot pin/link to the lever.  The lever is an extension of the sector gear and movement of the lever results in rotation of the sector gear. The sector gear meshes with spur gear (not visible) on the indicator needle axle which passes through the gauge face and holds the indicator needle.  Lastly, there is a small hairspring in place to put tension on the gear system to eliminate gear lash and hysteresis.

When the pressure inside the Bourdon-tube increases, the Bourdon-tube will straighten. The amount of straightening that occurs is proportional to the pressure inside the tube. As the tube straightens, the movement engages the link, lever, and gear system that results in the indicator needle sweeping across the gauge.

If you would like to discuss pressure gauges, the best locations to install them, or how much compressed air an application is using at a given pressure, give us a call, email, or chat.

Brian Farno
Application Engineer