Your Compressed Air Plumbing Could be Causing your Pressure Drop

Pressure drop is an unavoidable occurrence in compressed air systems. It’s caused by restrictions or obstructions to flow in your system, and that includes…well, everything:

  • No matter how big your header, drops, supply lines, etc. are, pressurized fluid encounters friction with the inside diameter of the conduit through which it flows.
  • Odds are, your header has at least a few elbows, wyes, tees, reducers, etc. Individually, the restrictions from these are usually quite small, but when you look at a system full of them, they can add up.
  • The type of piping your header is made of matters as well. Iron pipe WILL rust, which roughs up the inside wall of the pipe, and increases friction. Copper and aluminum aren’t near as bad, but there’s no such thing as a zero coefficient of friction.
  • Filters force the air flow through very small passages, torturous paths, or directional changes to remove particulate, moisture, and oil/oil vapor.
  • While not a restriction or obstruction, leaks in your system DO let out perfectly good compressed air before it can be used, so they can be included in our discussion.

Before you go off and redesign your air distribution header or remove your filters (DON’T do that!), it’s important to point that, historically, the highest pressure drops occur at or near the points of use:

  • Undersized hoses. The friction mentioned in the first ‘bullet’ above is compounded by increasing length, and decreasing diameter, of your air operated products’ supply lines. If your product’s performance is suffering, look up its rated air consumption and compare that to the flow rating of the length & diameter of the supply line.
  • Quick connect fittings. The push-to-connect types are particularly notorious for this…the air has to flow around the plug that stops flow when it’s disconnected. You can either replace them with threaded fittings, or if you still want the convenience of the quick connect, consider bushing up a size or two. A 3/8 NPT push to connect fitting will flow twice as much as a 1/4 NPT, and a 1/2 NPT will flow over three times as much as a 1/4 NPT fitting. In the EXAIR R&D room, Efficiency Lab, and shop, we actually use 3/4 NPT quick connects for a wide range of testing, demonstration, performance, etc.
  • Leaks. Even if they’re not big enough to cause a pressure drop, they’re still wasting compressed air. And if they ARE causing pressure drops, please stop reading this and go fix them, right now. Yeah; it’s that important.
Back to back Elbows, Tapered fittings, clean outs and ball vales all cause friction in the line resulting in Pressure loss.

Now, there are culprits on the supply side too: after coolers, dryers, and system filters can all contribute to pressure drops if they’re improperly sized, or, more often, improperly maintained. For troubleshooting, your first and best shot is to have pressure gauges at strategic locations…you can’t manage what you don’t measure. And not managing it can get costly:

  • Let’s say your compressor discharge header pressure is set to 100psig, but an undersized hose is only letting you get 65psig to an air operated product that really needs 80psig. You can increase your header pressure to 115-120psig to “push” more air through that hose, but keep in mind that all your other unregulated loads will get that pressure increase as well: pneumatic cylinders would operate faster, impact drivers will generate more torque, blow off devices will use more air (and get louder), etc.
  • Even if those things weren’t a problem, it’s going to cost you more. For every 2psi increase in your compressor’s discharge pressure, its power consumption increases by 1 percent. So, for the 20psi increase, it’s going to cost you about 10% more to operate that compressor. A larger diameter air hose, on the other hand, is a one time investment that doesn’t affect the rest of your compressed air system.
  • If you haven’t fixed the leaks I mentioned above yet, increasing your supply pressure will increase the leakage flow rate and, especially if the leak’s in a hose or hose fitting, it can tear that opening wider, compounding the leakage flow rate further.

EXAIR Corporation is keen on making sure you get the most out of our products, and your compressed air system. If you’ve got questions, we’ve got knowledge, and a wealth of resources to help…give us a call.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Intelligent Compressed Air: Piping and Pressure Drop

Pressure drop is an unavoidable occurrence in compressed air systems. It’s caused by restrictions or obstructions to flow in your system, and that includes…well, everything:

  • No matter how big your header, drops, supply lines, etc. are, pressurized fluid encounters friction with the inside diameter of the conduit through which it flows.
  • Odds are, your header has at least a few elbows, wyes, tees, reducers, etc. Individually, the restrictions from these are usually quite small, but when you look at a system full of them, they can add up.
  • The type of piping your header is made of matters as well. Iron pipe WILL rust, which roughs up the inside wall of the pipe, which adds friction. Copper and aluminum aren’t near as bad, but there’s no such thing as a zero coefficient of friction.
  • Filters force the air flow through very small passages, torturous paths, or directional changes to remove particulates, moisture, and oil/oil vapor.
  • While not a restriction or obstruction, leaks in your system DO let out perfectly good compressed air before it can be used, so they can be included in our discussion.

Before you go off and redesign your air distribution header or remove your filters (DON’T do that!), it’s important to point that, historically, the highest pressure drops occur at or near the points of use:

  • Undersized hoses. The friction mentioned in the first ‘bullet’ above is compounded by increasing length, and decreasing diameter, of your air operated products’ supply lines. If your product’s performance is suffering, look up its rated air consumption and compare that to the flow rating of the length & diameter of the supply line.
  • Quick connect fittings. The push-to-connect types are particularly notorious for this…the air has to flow around the plug that stops flow when it’s disconnected. You can either replace them with threaded fittings, or if you still want the convenience of the quick connect, consider bushing up a size or two. A 3/8 NPT push to connect fitting will flow twice as much as a 1/4 NPT, and a 1/2 NPT will flow over three times as much as a 1/4 NPT fitting. In the EXAIR R&D room, Efficiency Lab, and shop, we actually use 3/4 NPT quick connects for a wide range of testing, demonstration, performance, etc.
  • Leaks. Even if they’re not big enough to cause a pressure drop, they’re still wasting compressed air. And if they ARE causing pressure drops, please stop reading this and go fix them, right now. Yeah; it’s that important.

Now, there are culprits on the supply side too: aftercoolers, dryers, and system filters can all contribute to pressure drops if they’re improperly sized, or, more often, improperly maintained. For troubleshooting, your first and best shot is to have pressure gauges at strategic locations…you can’t manage what you don’t measure. And not managing it can get costly:

  • Let’s say your compressor discharge header pressure is set to 100psig, but an undersized hose is only letting you get 65psig to an air operated product that really needs 80psig. You can increase your header pressure to 115-120psig to “push” more air through that hose, but keep in mind that all your other unregulated loads will get that pressure increase as well: pneumatic cylinders would operate faster, impact drivers will generate more torque, blow off devices will use more air (and get louder), etc.
  • Even if those things weren’t a problem, it’s going to cost you more. For every 2psi increase in your compressor’s discharge pressure, its power consumption increases by 1 percent. So, for the 20psi increase, it’s going to cost you about 10% more to operate that compressor. A larger diameter air hose, on the other hand, is a one time investment that doesn’t affect the rest of your compressed air system.
  • If you haven’t fixed the leaks I mentioned above yet, increasing your supply pressure will increase the leakage flow rate and, especially if the leak’s in a hose or hose fitting, it can tear that opening wider, compounding the leakage flow rate further.

EXAIR Corporation is keen on making sure you get the most out of our products, and your compressed air system. If you’ve got questions, we’ve got knowledge, and a wealth of resources to help…give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook