How to Calculate and Avoid Compressed Air Pressure Drop in Systems

EXAIR has been manufacturing Intelligent Compressed Air Products since 1983.  They are engineered with the highest of quality, efficiency, safety, and effectiveness in mind.  Since compressed air is the source for operation, the limitations can be defined by its supply.  With EXAIR products and pneumatic equipment, you will need a way to transfer the compressed air from the air compressor.  There are three main ways; pipes, hoses and tubes.  In this blog, I will compare the difference between compressed air hoses and compressed air tubes.

The basic difference between a compressed air hose and a compressed air tube is the way the diameter is defined.    A hose is measured by the inner diameter while a tube is measured by the outer diameter.  As an example, a 3/8” compressed air hose has an inner diameter of 3/8”.  While a 3/8” compressed air tube has an outer diameter that measures 3/8”.  Thus, for the same dimensional reference, the inner diameter for the tube will be smaller than the hose.

Why do I bring this up?  Pressure drop…  Pressure Drop is a waste of energy, and it reduces the ability of your compressed air system to do work.  To reduce waste, we need to reduce pressure drop.  If we look at the equation for pressure drop, DP, we can find the factors that play an important role.  Equation 1 shows a reference equation for pressure drop.

Equation 1:

DP = Sx * f * Q1.85 * L / (ID5 * P)

DP – Pressure Drop

Sx – Scalar value

f – friction factor

Q – Flow at standard conditions

L – Length of pipe

ID – Inside Diameter

P – Absolute Pressure

 

From Equation 1, differential pressure is controlled by the friction of the wall surface, the flow of compressed air, the length of the pipe, the diameter of the pipe, and the inlet pressure.  As you can see, the pressure drop, DP, is inversely affected by the inner diameter to the fifth power.  So, if the inner diameter of the pipe is twice as small, the pressure drop will increase by 25, or 32 times.

Let’s revisit the 3/8” hose and 3/8” tube.  The 3/8” hose has an inner diameter of 0.375”, and the 3/8” tube has an inner diameter of 0.25”.  In keeping the same variables except for the diameter, we can make a pressure drop comparison.  In Equation 2, I will use DPt and DPh for the pressure drop within the tube and hose respectively.

Equation 2:

DPt / DPh = (Dh)5 / (Dt)5

DPt – Pressure drop of tube

DPh – Pressure Drop of hose

Dh – Inner Diameter of hose

Dt – Inner Diameter of tube

Thus, DPt / DPh = (0.375”)5 / (0.25”)5 = 7.6

As you can see, by using a 3/8” tube in the process instead of the 3/8” hose, the pressure drop will be 7.6 times higher.

Diameters: 3/8″ Pipe vs. 3/8″ tube

At EXAIR, we want to make sure that our customers are able to get the most from our products.  To do this, we need to properly size the compressed air lines.  Within our installation sheets for our Super Air Knives, we recommend the infeed pipe sizes for each air knife at different lengths.

There is also an excerpt about replacing schedule 40 pipe with a compressed air hose.  We state; “If compressed air hose is used, always go one size larger than the recommended pipe size due to the smaller I.D. of hose”.  Here is the reason.  The 1/4” NPT Schedule 40 pipe has an inner diameter of 0.364” (9.2mm).  Since the 3/8” compressed air hose has an inner diameter of 0.375” (9.5mm), the diameter will not create any additional pressure drop.  Some industrial facilities like to use compressed air tubing instead of hoses.  This is fine as long as the inner diameters match appropriately with the recommended pipe in the installation sheets.  Then you can reduce any waste from pressure drop and get the most from the EXAIR products.

With the diameter being such a significant role in creating pressure drop, it is very important to understand the type of connections to your pneumatic devices; i.e. hoses, pipes, or tubes.  In most cases, this is the reason for pneumatic products to underperform, as well as wasting energy within your compressed air system.  If you would like to discuss further the ways to save energy and reduce pressure drop, an Application Engineer at EXAIR will be happy to assist you.

 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Intelligent Compressed Air: Avoid Pressure Drop

A critical component to optimal performance of any compressed air operated product is ensuring sufficient compressed air flow. Simply put, inadequate air flow won’t allow you to get the job done.

As compressed air moves through the distribution system, it encounters friction inside of the walls of the pipe, tube, hose, etc. The diameter of the pipe, length, number of direction changes, and finish surface of the inner wall all play a part in this. A drop in air pressure will occur as a result of this friction. In addition to pressure drops experienced due to the distribution system, they can also occur at the point of use.

4597315810_fb8e3e4d26_o
Common analog pressure gauge

When designing and maintaining your compressed air system, pressure measurements should be taken across varying points to identify (and fix) any issues before they create a greater problem down the road. According to the Compressed Air Challenge, these are the places you should take regular pressure measurements to determine your system operating pressure:

  • Inlet to compressor (to monitor inlet air filter) vs. atmospheric pressure
  • Differential across air/lubricant separator
  • Interstage on multistage compressors
  • Aftercooler
  • At treatment equipment (dryers, filters, etc.)
  • Various points across the distribution system
  • Check pressure differentials against manufacturers’ specifications, if high pressure drops are noticed this indicates a need for service

*More recent compressors will measure pressure at the package discharge, which would include the separator and aftercooler.

Once you’ve taken these measurements, simply add the pressure drops measured and subtract that value from the operating range of your compressor. That figure is your true operating pressure at the point of use.

If your distribution system is properly sized and the pressure drops measured across your various equipment are within specifications, any pressure drop noticed at the point of use is indicative of an inadequate volume of air. This could be due to restrictive fittings, undersized air lines, hose, or tube, or an undersized air compressor. Check that the point of use product is properly plumbed to compressed air per the manufacturer’s specifications.

EXAIR Products are designed to minimize this pressure drop by restricting the flow of compressed air at the point of use. The more energy (pressure) that we’re able to bring to the point of use, the more efficient and effective that energy will be. The photo below shows two common examples of inefficient compressed air usage. With an open-ended blow off, a pressure drop occurs upstream inside of the supply line. If you were to measure the pressure directly at the point of use, while in operation, you’d find that the pressure is significantly lower than it is at the compressor or further up the line. In the other photo with modular style hose, some pressure is able to be built up but if it gets too high the hose will blow apart. These types of modular style hose are not designed to be used with compressed gases.

open end blow offs
They may be inefficient, but they sure are loud…

EXAIR’s Super Air Nozzles, on the other hand, keep the compressed air pressure right up to the point of discharge and minimize the pressure drop. This, in addition to the air entrained, allows for a high force while maximizing efficiency. If you’d like to talk about how an EXAIR Intelligent Compressed Air Product could help to minimize pressure drop in your processes give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

 

Pressure gauge photo courtesy of Cliff Johnson via Flickr Creative Commons License