Estimating the Cost of Compressed Air Systems Leaks

Leaks in a compressed air system can waste thousands of dollars of electricity per year. In fact, in many plants, the leakage can account for up to 30% of the total operational cost of the compressor. Some of the most common areas where you might find a leak would be at connection joints like valves, unions, couplings, fittings, etc. This not only wastes energy but it can also cause the compressed air system to lose pressure which reduces the end use product’s performance, like an air operated actuator being unable to close a valve, for instance.

One way to estimate how much leakage a system has is to turn off all of the point-of-use devices / pneumatic tools, then start the compressor and record the average time it takes for the compressor to cycle on and off. The total percentage of leakage can be calculated as follows:

Percentage = [(T x 100) / (T + t)]

T = on time in minutes
t = off time in minutes

The percentage of compressor capacity that is lost should be under 10% for a system that is properly maintained.

Another method to calculate the amount of leakage in a system is by using a downstream pressure gauge from a receiver tank. You would need to know the total volume in the system at this point though to accurately estimate the leakage. As the compressor starts to cycle on,  you want to allow the system to reach the nominal operating pressure for the process and record the length of time it takes for the pressure to drop to a lower level. As stated above, any leakage more than 10% shows that improvements could be made in the system.

Formula:

(V x (P1 – P2) / T x 14.7) x 1.25

V= Volumetric Flow (CFM)
P1 = Operating Pressure (PSIG)
P2 =  Lower Pressure (PSIG)
T = Time (minutes)
14.7 = Atmospheric Pressure
1.25 = correction factor to figure the amount of leakage as the pressure drops in the system

Now that we’ve covered how to estimate the amount of leakage there might be in a system, we can now look at the cost of a leak. For this example, we will consider a leak point to be the equivalent to a 1/16″ diameter hole.

A 1/16″ diameter hole is going to flow close to 3.8 SCFM @ 80 PSIG supply pressure. An industrial sized air compressor uses about 1 horsepower of energy to make roughly 4 SCFM of compressed air. Many plants know their actual energy costs but if not, a reasonable average to use is $0.25/1,000 SCF generated.

Calculation :

3.8 SCFM (consumed) x 60 minutes x $ 0.25 divided by 1,000 SCF

= $ 0.06 per hour
= $ 0.48 per 8 hour work shift
= $ 2.40 per 5-day work week
= $ 124.80 per year (based on 52 weeks)

As you can see, that’s a lot of money and energy being lost to just one small leak. More than likely, this wouldn’t be the only leak in the system so it wouldn’t take long for the cost to quickly add up for several leaks of this size.

If you’d like to discuss how EXAIR products can help identify and locate costly leaks in your compressed air system, please contact one of our application engineers at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

 

 

 

Typical Compressed Air Plumbing Mistakes

As a manufacturer of Intelligent Compressed Air Products, we like to address one of the most common problems with installation, proper plumbing.  A picture is worth a 1,000 words, and knowledge is power.  I will show both to help eliminate any pitfalls when installing our products.

A customer purchased a model 110072 Super Air Knife.  It is a powerful and efficient air knife that is 72 inches (1.8 meter) long.  He mounted it across his sheet to blow debris off from the surface of his product.  After installing the Super Air Knife, he was having issues in getting a strong even force along the entire knife.  He would only get compressed air blowing on the ends of the Super Air Knife.  The center did not have anything coming out.  He needed our help to solve.  In detailing my forensics, I asked him for pictures of his installation as I went over some basic questions.  Here is what we found:

Question 1: What is the pressure at the entrance of the Super Air Knife?

Answer 1: 95 psig (6.5 bar)

Picture: The gage reading is at the regulator.

Solution: There should also be a pressure gage right at the entrance of the Super Air Knife. It helps to define any issues in the system by comparing line pressure at the regulator to inlet pressure at the Super Air Knife.  This customer would see a very low air pressure at the Super Air Knife caused by all the restrictions (reference below).

Issue 1
Issue 1

Question 2: What size is your compressed air line that is supplying the Super Air Knife?

Answer 2: 1 ½” NPT pipe. (From the installation manual, this is the correct size pipe to supply the air required for the Super Air Knife when it is 150′ from the compressor.)

Picture: The compressed air line is reduced from 1 ½” NPT to ¼” NPT pipe.  Yes, there is a 1-1/2″ pipe bringing air close to the Super Air Knife, but it is actually a 1/4″ NPT pipe fitting on a small coiled hose that is supplying the knife. Due to a lack of air vlume, the pressure drop is huge and it is performance of the Super Air Knife.

Solution: They will need to run 1 ½” NPT pipe to the Super Air Knife.  Then uses Pipe Tees and/or Crosses to branch into the feed lines to the Super Air Knife.

Issue 2
Issue 2

Question 3: Do you have any restrictions in the compressed air line?

Answer 3: I don’t know.

Picture: We have multiple issues.

  1. The ¼” NPT compressed air line is too small (huge restriction).
  2. The red filter in photo above is too small (huge restriction). The black filter and black regulator are sized correctly to supply the Super Air Knife, but the red filter is too small causing a large pressure drop.
  3. One of the biggest culprits in choking compressed air flow to a pneumatic product are Quick Disconnect fittings. The picture below is a quick disconnect on the inlet port to the Super Air Knife (huge restriction)
  4. The yellow compressed air line is also way too small. I only bring this up because there is a difference in diameters from Schedule 40 pipe to air hose and tubing. Make sure that the inner diameters match or are larger than the recommended pipe size.

Solution: In order to have the Super Air Knife properly working, we have to make sure that it can get enough compressed air.  I had the customer remove all the small fittings, yellow tubing, quick disconnects, and the small filter.

Issue 3
Issue 3

Question 4: How many ports on the Super Air Knife are you using to supply the compressed air?

Answer 4: 2 ports.

Picture: With this length of the Super Air Knife, it requires 4 ports to supply compressed air (reference the Installation Manual). They should be evenly spaced from one end of the Super Air Knife to the other.  This is another reason that he only had compressed air coming out at the ends of the Super Air Knife.

Solution: EXAIR offers a Plumbing Kit to make sure the entire knife is supplied correctly.  The plumbing kit contains all the proper size fittings and hose to plumb the correct number of Air Knife inlets. These kits prevent you from hunting for the right fittings and from using undersized parts, which will not be able to supply the knife with enough air.

Model 9078 PKI Kit
Model 9078 Plumbing Kit

With proper installation at the beginning, it will save you time and headaches, and you will be able to utilize the EXAIR products properly. If you have additional questions about your setup, you can contact an Application Engineer at EXAIR at 1-800-903-9247.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb