Proper Plumbing Means Proper Performance

36″ Aluminum Super Air Knife being used in a monofilament extrusion line

An EXAIR customer recently contacted me about the application shown above, using an aluminum Super Air Knife model 110036 as a component to a blow off application in a monofilament extrusion line.  The extrusions from this line are used in one of the end user’s main product lines, a personal health device used by over a billion people around the world.

The original problem of drying the extrusions can certainly be solved with the setup shown, but the output force from the knife was less than what the customer expected, and below the EXAIR published data.  We take great care in the collection and verification of our performance data, so this prompted a deeper dive into the application to determine what could be the cause.

Immediately upon seeing the application photos, there were two things which stood out.  The first was the angle of attack of the knife, and the second was the compressed air plumbing.  The angle of attack in the original setup was ~90°, nearly perpendicular to the extrusions passing through the airstream from the knife.  EXAIR always recommends an angle of attack of ~45° to increase time in contact between the airstream from the knife and the materials passing through the airstream.  Although a small adjustment, this angle significantly contributes to overall blow off performance.

5mm ID x 8mm OD tubing used to supply compressed air to the knife

But, the real issue with this application was in the compressed air supply.  The tubing for this knife was shown as having a 5mm ID and an 8mm OD, which will allow a compressed air flow of ~40 SCFM at 80 PSIG, maximum, without consideration to pipe length from the compressor.  The 36” aluminum Super Air Knife will require 104.4 SCFM at 80 PSIG operating pressure.  So, it was clear that there was a significant plumbing problem, leading to the reduced performance from the knife.

In order to prove this out, we first had to take a pressure reading directly at the knife.  When this was done, the operating pressure dropped from ~85 PSIG at the main header to less than 20 PSIG at the knife.  By taking this pressure reading directly at the knife we were able to gain valuable information as to the true operating pressure of the knife, which was far below what the customer expected, but which made perfect sense given the performance output.

The remedy in this case was to increase the size of the supply line to at least 15mm ID (approximately equivalent to a ½” schedule 40 line), and preferably to something in the range of 19-20mm (~a ¾” schedule 40 line).  Once this was done the knife operated flawlessly, and after adjusting the angle of attack this application was optimized for the best possible results.

Being able to find the source of the problem for this application was a great service to the customer.  Our engineers are well-versed in compressed air system requirements, and we’re available for help in your application if needed.  If you’d like to contact an EXAIR Application Engineer we can be reached by email, phone (1-800-903-9247), or Twitter.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Typical Compressed Air Plumbing Mistakes

As a manufacturer of Intelligent Compressed Air Products, we like to address one of the most common problems with installation, proper plumbing.  A picture is worth a 1,000 words, and knowledge is power.  I will show both to help eliminate any pitfalls when installing our products.

A customer purchased a model 110072 Super Air Knife.  It is a powerful and efficient air knife that is 72 inches (1.8 meter) long.  He mounted it across his sheet to blow debris off from the surface of his product.  After installing the Super Air Knife, he was having issues in getting a strong even force along the entire knife.  He would only get compressed air blowing on the ends of the Super Air Knife.  The center did not have anything coming out.  He needed our help to solve.  In detailing my forensics, I asked him for pictures of his installation as I went over some basic questions.  Here is what we found:

Question 1: What is the pressure at the entrance of the Super Air Knife?

Answer 1: 95 psig (6.5 bar)

Picture: The gage reading is at the regulator.

Solution: There should also be a pressure gage right at the entrance of the Super Air Knife. It helps to define any issues in the system by comparing line pressure at the regulator to inlet pressure at the Super Air Knife.  This customer would see a very low air pressure at the Super Air Knife caused by all the restrictions (reference below).

Issue 1
Issue 1

Question 2: What size is your compressed air line that is supplying the Super Air Knife?

Answer 2: 1 ½” NPT pipe. (From the installation manual, this is the correct size pipe to supply the air required for the Super Air Knife when it is 150′ from the compressor.)

Picture: The compressed air line is reduced from 1 ½” NPT to ¼” NPT pipe.  Yes, there is a 1-1/2″ pipe bringing air close to the Super Air Knife, but it is actually a 1/4″ NPT pipe fitting on a small coiled hose that is supplying the knife. Due to a lack of air vlume, the pressure drop is huge and it is performance of the Super Air Knife.

Solution: They will need to run 1 ½” NPT pipe to the Super Air Knife.  Then uses Pipe Tees and/or Crosses to branch into the feed lines to the Super Air Knife.

Issue 2
Issue 2

Question 3: Do you have any restrictions in the compressed air line?

Answer 3: I don’t know.

Picture: We have multiple issues.

  1. The ¼” NPT compressed air line is too small (huge restriction).
  2. The red filter in photo above is too small (huge restriction). The black filter and black regulator are sized correctly to supply the Super Air Knife, but the red filter is too small causing a large pressure drop.
  3. One of the biggest culprits in choking compressed air flow to a pneumatic product are Quick Disconnect fittings. The picture below is a quick disconnect on the inlet port to the Super Air Knife (huge restriction)
  4. The yellow compressed air line is also way too small. I only bring this up because there is a difference in diameters from Schedule 40 pipe to air hose and tubing. Make sure that the inner diameters match or are larger than the recommended pipe size.

Solution: In order to have the Super Air Knife properly working, we have to make sure that it can get enough compressed air.  I had the customer remove all the small fittings, yellow tubing, quick disconnects, and the small filter.

Issue 3
Issue 3

Question 4: How many ports on the Super Air Knife are you using to supply the compressed air?

Answer 4: 2 ports.

Picture: With this length of the Super Air Knife, it requires 4 ports to supply compressed air (reference the Installation Manual). They should be evenly spaced from one end of the Super Air Knife to the other.  This is another reason that he only had compressed air coming out at the ends of the Super Air Knife.

Solution: EXAIR offers a Plumbing Kit to make sure the entire knife is supplied correctly.  The plumbing kit contains all the proper size fittings and hose to plumb the correct number of Air Knife inlets. These kits prevent you from hunting for the right fittings and from using undersized parts, which will not be able to supply the knife with enough air.

Model 9078 PKI Kit
Model 9078 Plumbing Kit

With proper installation at the beginning, it will save you time and headaches, and you will be able to utilize the EXAIR products properly. If you have additional questions about your setup, you can contact an Application Engineer at EXAIR at 1-800-903-9247.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Compressed Air Calculations, Optimization, and Tips

EXAIR uses our blog platform to communicate everything from new product announcements to personal interests to safe and efficient use of compressed air. We have recently passed our 5 year anniversary of posting blogs (hard for us to believe) and I thought it appropriate to share a few of the entries which explain some more of the technical aspects of compressed air.

Here is a good blog explaining EXAIR’s 6 steps to optimization, a useful process for improving your compressed air efficiency:


One of the Above 6 steps is to provide secondary storage, a receiver tank, to eliminate pressure drops from high use intermittent applications. This blog entry addresses how to size a receiver tank properly:

Here are 5 things everyone should know about compressed air, including how to calculate the cost of compressed air:

These next few entries address a common issue we regularly assist customers with, compressed air plumbing:

In a recent blog post we discuss how to improve the efficiency of your point of use applications:

Thanks for supporting our blog over the past 5 years, we appreciate it. If you need any support with your sustainability or safety initiatives, or with your compressed air applications please contact us.  

Have a great day,
Kirk Edwards
@EXAIR_KE

How to Size Pipes for Your Compressed Air System

Most facility’s compressed air systems have evolved over time. A spur added here a spur added there. Eventually pressure drop issues develop. Common practice is to increase the air pressure at the compressor. While it may address the symptom it does not address the problem and is very costly. For every 2 PSI increase in pressure requires 1% more energy.

A properly designed system will be a loop with spurs. This will ensure all airsystem

drops will share the air equally. The header loop should be able to carry all the air the compressor is capable of producing.  Best practices suggest the distribution header should be sized to allow an air velocity not to exceed 30 ft/second. The formula to calculate this is:

A =    144 * Q * Pa
       V *60 x (Pd +Pa)

Pipe Diameter = √ (A*4/3.14)

Where:

A = cross sectional area if the pipe bore in square inches or ∏ x diameter squared / 4
Q = Flow rate SCFM
Pa = Prevailing absolute pressure. Sea level is 14.7
Pd = compressor gauge pressure minus prevailing absolute pressure
V = Design pipe velocity ft/sec

Example: Size a header for 500 SCFM at 100 PSI at an elevation at sea level

A = 144 x 500 x 14.7 / 30 x 60 (100 + 14.7) = 5.13  square inches

Pipe diameter then is square root of  (5.13 * 4) / 3.14 = 2.56″

So an 2.56″  internal diameter pipe would be the proper size header.

The same formula can be used to calculate the sizes of the drops. In this case you would use the demand flow rate for Q.

Joe Panfalone
Application Engineer
Phone (513) 671-3322
Fax (513) 671-3363
Web: http://www.exair.com
Twitter: http://www.twitter.com/exair_jp
Facebook: http://www.facebook.com/exair