Super Air Wipe Vs. Block Type Air Wipe

Air Wipes, which provide 360 degree blowoff, are typically used to remove heat, liquid, debris or static from wire, cable, pipe, tube, or extrusions.

We had a customer that was using a block type Air Wipe from a competitor to remove water from an extrusion.  These air wipes are built using a plastic material, typically with some additional ceramic insert to resist abrasion of the wire, the halves are hinged with air holes drilled into each half which carries air through the block and on to the wire. They were using these block air wipes on several lines. The interesting point of this blog is that it required 5 block type air wipes to equal the results of 1 EXAIR Super Air Wipe.

Since EXAIR’s Super Air Wipe equaled the performance of 5 of the competitors it consumed less air was less expensive and produced less noise.  Also in space sensitive applications the EXAIR Super Air Wipe is much thinner than the block type.  To highlight this the Super Air Wipe is 1.13″ thick on all 11 models that range from 3/8″ to 11″ throat diameter.   The performance of the block air wipe can only be changed by altering the inlet air pressure while the EXAIR Super Air Wipe can also be changed by adusting the inlet air pressure OR by adding an additional shim the force can be nearly doubled!

Many of these block type air wipes use a series of holes to direct the compressed air supply at an angle over the material that needs to be cleaned off.  EXAIR’s Super Air Wipe being an engineered compressed air product use’s fluid dynamic’s to create more force as demonstrated below. The air from EXAIR’s Super Air Wipes is a continuous 360 degrees, without the gaps a series of holes creates.

How The Air Wipe Works

Compressed air flows through the inlet (1) of the Air Wipe into the annular chamber (2).  It is then throttled through a small ring nozzle (3) at high velocity.  This primary airstream adheres to the Coanda profile (4), which directs down the angled surface of the Air Wipe.  A low pressure is created at the center (5) inducing a high volume flow of surrounding air into the primary airstream.  As the airflow leaves the wipe, it creates a conical 360° ring of air that attaches itself to the surface of the material running through it (6) uniformly wiping the entire surface with the high velocity airflow.

Block type air wipes are generally available in standard sizes up to 7″ in diameter while EXAIR’s Super Air Wipes are available in stock diameters up to 11″ and we also offer custom sizes to suit many other applications.

If you have any items that need to have a 360 degree blowing pattern, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Proper Plumbing Means Proper Performance

36″ Aluminum Super Air Knife being used in a monofilament extrusion line

An EXAIR customer recently contacted me about the application shown above, using an aluminum Super Air Knife model 110036 as a component to a blow off application in a monofilament extrusion line.  The extrusions from this line are used in one of the end user’s main product lines, a personal health device used by over a billion people around the world.

The original problem of drying the extrusions can certainly be solved with the setup shown, but the output force from the knife was less than what the customer expected, and below the EXAIR published data.  We take great care in the collection and verification of our performance data, so this prompted a deeper dive into the application to determine what could be the cause.

Immediately upon seeing the application photos, there were two things which stood out.  The first was the angle of attack of the knife, and the second was the compressed air plumbing.  The angle of attack in the original setup was ~90°, nearly perpendicular to the extrusions passing through the airstream from the knife.  EXAIR always recommends an angle of attack of ~45° to increase time in contact between the airstream from the knife and the materials passing through the airstream.  Although a small adjustment, this angle significantly contributes to overall blow off performance.

5mm ID x 8mm OD tubing used to supply compressed air to the knife

But, the real issue with this application was in the compressed air supply.  The tubing for this knife was shown as having a 5mm ID and an 8mm OD, which will allow a compressed air flow of ~40 SCFM at 80 PSIG, maximum, without consideration to pipe length from the compressor.  The 36” aluminum Super Air Knife will require 104.4 SCFM at 80 PSIG operating pressure.  So, it was clear that there was a significant plumbing problem, leading to the reduced performance from the knife.

In order to prove this out, we first had to take a pressure reading directly at the knife.  When this was done, the operating pressure dropped from ~85 PSIG at the main header to less than 20 PSIG at the knife.  By taking this pressure reading directly at the knife we were able to gain valuable information as to the true operating pressure of the knife, which was far below what the customer expected, but which made perfect sense given the performance output.

The remedy in this case was to increase the size of the supply line to at least 15mm ID (approximately equivalent to a ½” schedule 40 line), and preferably to something in the range of 19-20mm (~a ¾” schedule 40 line).  Once this was done the knife operated flawlessly, and after adjusting the angle of attack this application was optimized for the best possible results.

Being able to find the source of the problem for this application was a great service to the customer.  Our engineers are well-versed in compressed air system requirements, and we’re available for help in your application if needed.  If you’d like to contact an EXAIR Application Engineer we can be reached by email, phone (1-800-903-9247), or Twitter.

Lee Evans
Application Engineer

Super Air Wipe Cools, Cleans and Dries Extruded Shapes

We have many customers that use the manufacturing process of extrusion to make their various type of products.  EXAIR has an Intelligent Compressed Air Product that works very well with these processes to provide a drying, blowoff and cooling function.

Many types of products are produced via the process of extrusion, which is to shape (as metal or plastic) by forcing through a die.  There are many advantages to the extrusion process, including it being a continuous operation, it runs at high speeds, is good for high volume and low production costs, as well as many other factors.

The extrusion process typically requires heating of the metal billet or melting of the plastic to a high enough temperature to allow it to flow and be shaped as it it forced through the die. After the product has passed through the die and has been shaped it must be cooled and this is usually achieved by passing the it through a water bath.  Once the material has been cooled, it needs to be dried to remove the moisture, before the extrusion enters the next stage of processing, like getting cut to length or printed upon.

The EXAIR Super Air Wipe is ideal for blowoff, drying, cleaning and cooling of continuous materials such as extrusions, pipe, cable and more.


The Super Air Wipe has a split design which offers easy clamping around the surface of the material, eliminating the need for threading. All Super Air Wipe models include stainless steel screws and shims.  Stainless Steel wire braided hose which is plumbed to each half, is included on sizes up to 4″ to simplify installation and plumbing. Aluminum models are rated to 400°F and the stainless steel models for temperatures up to 800°F.  Models are available in size from 1/2″ to 11″ Throat Diameters.

The Super Air Wipe provides a uniform, 360° air stream that is ideal for drying and cooling of extruded materials.

To discuss your application and how an EXAIR Super Air Wipe can benefit you extrusion process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

Super Air Knife Dries Plastic Fence Net

I recently worked with an extruded fence manufacturer who was looking to dry the material after a rinse process. The polyethylene fencing is 48″ wide with cells ranging from .25″ up to 2″ and the web is traveling at 5 meters per minute. After leaving the rinse bath, the web spans a 12′ area before being sent to a winder where they apply a tape before producing the finished rolls. It was in this area the company was looking to add a blow off device to remove the moisture to assure the tape would adhere to the surface.

Example of the fence, which is commonly used at construction sites as safety netting.

After discussing the details with the customer of the area that needed to be covered, I recommended they use our 48″ Super Air Knife for the application. The Super Air Knife produces a high velocity, laminar sheet of airflow across the entire length of the knife. Operating at 80 PSIG, using a 40:1 amplification rate (entrained air to compressed air) the unit produces a velocity of 11,800 feet per minute while maintaining a low sound level of only 69 dBA. Air consumption is 2.9 SCFM per inch of knife when operated at 80 PSIG. Since the customer was looking to treat both sides of the fencing, they would need to mount a unit above and below the web for effective blowoff.

Super Air Knife
The Super Air Knife provides a high velocity curtain of air at minimal compressed air usage.

The Super Air Knife is the most efficient and quietest air knife offered on the market today. Available in lengths from 3″ up to 108″ in single-piece construction and offered in aluminum, 303ss or 316ss construction, they are the perfect choice for small scale or wide coverage blowoff applications. With help selecting the best EXAIR Air Knife for your process or to discuss your application, give me a call, I’d be happy to help.

Justin Nicholl
Application Engineer


Plastic orange construction fence-net image courtesy of Jnzl’s Photos via Creative Commons license.


Ion Air Jet Improves Teflon Gasket Cutting

If your familiar with our blog, you may have noticed that a common theme lately has been static.  Take for example our recent blog titled  Static Can Become A Big Issue With Winter Approaching , details how static was negatively affecting an automobile instrumentation assembler’s production or another one titled Static Electricity – What is it? , providing a better general understanding of the phenomena. Here in Cincinnati we’ve had some relatively mild temperatures lately but this weekend it was just downright cold. Now that our furnace is running, the humidity in the house is starting to be removed which not only wreaks havoc on our hardwood floors, but in winter’s past, it seemed like every time one of us touched each other or something metal , we got “zapped” due to static. As many homeowners do, I’ve purchased several humidifiers and strategically placed them throughout the house which has helped immensely. While this is a good approach for a residence, it’s not as easy an alternative when dealing in an industrial setting.

I recently worked with a customer in the northeastern U. S. who manufacturers Teflon gaskets. As the Teflon tube exits the extruder, a blade passes by and cuts a very thin cross section of material which drops into a collection bin underneath. During the spring and summer months, the process was running seamlessly but over the past couple weeks, temperatures in the area have dropped, causing the company to turn on the large, gas heaters on the production floor. Now that the air is starting to dry out, they are beginning to see the gaskets cling to the blade and surrounding tooling which is not only causing damage to the part itself but it’s also resulting in production delays.

Since the area they are needing to treat is relatively small, I recommended they use our Ion Air Jet. The Ion Air Jet  provide a focused stream of ionized air to eliminate the surface static of a material or object. By incorporating a pressure regulator to operate at low pressure, they would be able to reduce the outlet force and velocity, allowing them to gently blow the airflow across the area as to not disrupt the collection of the parts.

NEW Ion Air Jet
Static can cause a variety of nuisances in industrial settings ranging from damage to sensitive electronics, machine jams, parts or sheets sticking together, and personnel shock just to name a few. If you need any help selecting the best EXAIR product for your needs, don’t hesitate to ask one of our application engineers for assistance. I’d be shocked if we couldn’t help. (I know, not punny).

Justin Nicholl
Application Engineer

Light Duty Line Vac Used To Move Weatherstrip Trim, Eliminates Production Delay

Last week I was contacted by a custom machine builder who was looking to improve their design of a rubber weatherstrip notching machine for an automotive company. As the weatherstrip enters the machine, there are several cuts taken along the length, resulting in excess scrap trim which drops into a collection bin. The operation is then stopped, so the operator can manually empty the bin into a recycle hopper a few feet away. This was causing a few issues, most notably the delay in production, but also the operators were sometimes forgetting to empty the bin which caused jams in the machine and a messy work area. The machine builder was looking at our Line Vac Conveyors as a more reliable, automated option to convey the material instead of relying on the operator, so they reached out for assistance in selecting the best model.

The lightweight, rubber scrap trim varied in size, with the largest being a piece around 3/4″ wide x 13″ long, and they needed to convey it about 3′ – 4′ with the majority of the run begin gravity fed into the recycle bin. They were hoping to place the Line Vac right at the cutting head, so as the part is being processed, the scrap piece would be pulled in to the suction side, lengthwise, to avoid any blockage or build up. After reviewing all of the information and a sketch of the proposed setup, I recommend they use our Model # 130200 2″ Light Duty Line Vac. The Light Duty Line Vac uses less compressed air than our other air operated conveyors and is the ideal choice when looking to move lightweight or smaller volumes of material a short distance. With this particular application being mostly gravity fed, the Light Duty Line Vac would ensure the material was effectively picked up and delivered to the hopper, eliminating the current manual process.

Light Duty Line Vac
Light Duty Line Vacs are available to ship from stock in sizes ranging from 3/4″ up to 6″.

The Line Vac Air Operated Conveyors have no moving parts or motors to wear out, providing a maintenance free way to move dry material. For help selecting the best option to fit your needs or to discuss how another EXAIR product might be suitable for your application, give us a call.

Justin Nicholl
Application Engineer


Static Electricity – What is it?

Now that the air is cooling and the humidity is dropping, you may often experience the phenomena of static electricity, and the resultant shock when touching something metal. As a child, you may have learned about static electricity by rubbing a balloon on your head and then seeing it stick to the wall. What is the science behind static electricity?


All materials are made up of atoms, which have a positively charged core called the nucleus surrounded by a cloud of negatively charged electrons.  Each material is different, and in some types of materials the positive nucleus has a very strong pull on the electrons while in other materials the pull is very weak.  If we were to put a strong  pull material in contact with a weaker pull material, atoms from the weak pull material will migrate, and when the materials are separated, additional electrons will remain with the strong pull material.  Due to the overall increase in electron quantity, the material becomes negatively charged and the other material becomes positively charged. If the materials are rubbed together, the opportunities for the electron migration increases, and thus more electrons are exchanged.

Electrons build up more easily in dry conditions. When the air has humidity, static build up is less common because a very thin layer of water molecules coat most surfaces, which allows the electrons to move more freely and make most materials conductive and static free.

In some cases, static electricity can be a good thing – laser printers and photocopiers use static electricity to transfer ink from the drum to the paper.  Also, some power plants and chemical factories use static electricity  to remove pollutants in a process that takes place within the smokestack.

But generally when EXAIR gets involved, it is because the static electricity is causing an unwanted build up of static charge that affects a manufacturing process. The results of a static charge imbalance can result in a shock to an operator, materials sticking together, poor print quality, sensor or counter malfunctions, bad surface finish, or any number of other problems.

EXAIR offers systems for total static control, such as the Super Ion Air Knife and Ionizing Bars for wide applications such as paper, film and plastic webs, the Super Ion Air Wipe for narrow, continuously moving materials such as wire, tube, or extrusions.  Also offered are the handheld Ion Air Gun for use on three dimensional parts prior to assembly, packaging painting or finishing. Other options include the Ion Air Cannon for limited space or remote mounting applications, Ion Air Jet for tight spaces and concentrated airflow, and the Ionizing Point to provide close distance and accurate static removal.

Super Ion Air Wipe

To discuss your static elimination concerns , feel free to contact EXAIR and one our  Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

Spark Photo Credit – Eric Skiff – via Creative Commons License