You Don’t Need to Spend Thousands to Optimize Your Compressed Air System

There is no denying it, saving compressed air is a process.  This process often involves some type of energy audit or at the very least an evaluation of something going wrong with production and a way to improve it.  Many programs, consultants, and sales reps will devise a solution for the problem.

Often times the solution is to create a more efficient supply side of the compressed air system. The supply side is essentially everything within the compressor room or located in close proximity to the actual air compressor. While optimizing the supply side can amount to savings, many of these solutions and services can involve great expense, or capital expenditure processes.  These processes can often lead to delays and continued waste until the solution is in place.  What if there was a way to lower compressed air usage, save energy, solve some demand issues on the compressed air system and save some money while the capital expenditure process goes through for the larger scale project.

These solutions are a simple call, chat, email or even fax away. Our Application Engineers are fully equipped to help determine what points of your compressed air demand side can be optimized. The process generally starts with our Six Steps To Compressed Air Optimization.

6 Steps from Catalog

Once the points of use are evaluated the Application Engineer can give an engineered solution to provide some relief to the strain on your compressed air supply side.  For instance, an open copper pipe blow off that is commonly seen within production environments can easily be replaced with a Super Air Nozzle on the end of a Stay Set Hose that will still bend and hold position like the copper pipe does while also saving compressed air, reducing noise level, and putting some capacity back into the supply side of the compressed air system.

engineered nozzle blow offs
Engineered solutions (like EXAIR Intelligent Compressed Air Products) are the efficient, quiet, and safe choice.

One of the key parts to the solutions that we offer here at EXAIR is they all ship same day on orders received by 3 PM ET that are shipping within the USA. To top that off the cost is generally hundreds, rather than thousands (or tens of thousands) of dollars. Well under any level of a capital expenditure and can generally come in as a maintenance purchase or purchased quickly through the supply cribs.  Then, to take this one step further, when the EXAIR solution shows up within days and gets installed EXAIR offers for you to send in the blow off that was replaced and receive a free report on what level of compressed air savings and performance increases you will be seeing and provide a simple ROI for that blow off (though we would also encourage a comparison before a purchase just so you have additional peace of mind).

This amounts to saving compressed air and understanding how much air is being saved, adding capacity back into your supply side which will reduce strain on the air compressor, give the ability to increase production while the capital expenditure for the end solution of controls and higher efficiency on the supply side is approved to then save even more compressed air and energy.

The point is this, savings and efficiency doesn’t have to involve a capital expenditure, if that is the end game for your project that is great! Let EXAIR provide you a solution that you can have in house by the next business day to save money NOW and then put that savings towards another project. No matter the method, it all starts with a call, chat, email or fax.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Friction Loss – Pressure Drops – Fitting Restrictions – Why Compressed Air Plumbing Matters

Over the weekend I was working on a car in my driveway and I needed a large volume of air at the far end of the car to try and unplug a clogged sunroof drain line.  Rather than trying to move the car while it was mostly taken apart, I just hooked up another air line extension and started to go to the drain.   Even knowing what I know as an EXAIR Application Engineer about lengths of tubing, air restriction, and fitting restrictions, I went ahead with the quick and easy “fix”.

An example of pressure drop from a compressed air quick disconnect.

I grabbed another 30′ – 3/8″ i.d. air line with 1/4″ quick disconnects (see why this is wrong with this blog) on both end, rather than getting out the 50′ long 1/2″ i.d. air line that I have with proper fittings that then reduce down to a 1/4″NPT at the end to tie into most of my air tools. By doing so I ended up hooking up a Safety Air Gun which then gave a very light puff of air into the tube and the clog in the line went nowhere.  As a matter of fact, it was almost like it laughed because the tubing vibrated as if the clog said, “Pfft I am going nowhere.”

I then, stepped back and evaluated what I had done in a rush to try and get a job done rather than taking the extra five minutes to get the proper air line to do the job.   I then spent 10 minutes putting that hose up and getting out the correct hose.  Then, with a whoosh and a thud the clog was launched into my yard from the clogged drain port and I finished the repairs.

If only I had watched Russ Bowman’s spectacular video on Proper Compressed Air Supply Plumbing the day before. Rather than wasting time with the quick “fix” that cost me more time and didn’t fix anything I should have taken a little more time up front to verify I had properly sized my lines for the job at hand.

If you would like to discuss compressed air plumbing, appropriate line sizes, or insufficient flow on your compressed air system, please contact an EXAIR Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Air – What Is It?

Air… We all breathe it, we live in it, we even compress it to use it as a utility.  What is it though?  Well, read through the next to learn some valuable points that aren’t easy to see with your eyes, just like air molecules.

Air – It surrounds us – (Yosuke,1)
  1. Air is mostly a gas.
    • Comprised of roughly 78% Nitrogen and 21% Oxygen.  Air also contains a lot of other gases in minute amounts.  Those gases include carbon dioxide, neon, and hydrogen.
  2. Air is more than just gas.
    • While the vast majority is gas, air also holds lots of microscopic particulate.
    • These range from pollen, soot, dust, salt, and debris.
    • All of these items that are not Nitrogen or Oxygen contribute to pollution.
  3. Not all the Carbon Dioxide in the air is bad.
    • Carbon Dioxide as mentioned above is what humans and most animals exhale when they breathe.  This gas is taken in by plants and vegetation to convert their off gas which is oxygen.
    • Think back to elementary school now.   Remember photosynthesis?
      • If you don’t remember that, maybe you remember Billy Madison, “Chlorophyll, more like Bore-a-fil.”
    • Carbon dioxide is however one of the leading causes of global warming.

      Moisture In The Air – (Grant)2
  4. Air holds water.
    • That’s right, high quality H2O gets suspended within the air molecules causing humidity.  This humidity ultimately reaches a point where the air can simply not hold anymore and it starts to rain.  The lack of humidity in the air leads to static, while lots of moisture in the air when it gets compressed causes moisture in compressed air systems.
  5. Air changes relative to altitude.
    • Air all pushes down on the Earth’s surface.  This is known as atmospheric pressure.
    • The closer you are to sea level the higher the level of pressure because the air molecules are more densely placed.
    • The higher you are from sea level the lower the density of air molecules.  This causes the pressure to be less.  This is also why people say the air is getting a little thin.

Hopefully this helps to better explain what air is and give some insight into the gas that is being compressed by an air compressor and then turned into a working utility within a production environment.  If you would like to discuss how any of these items effects the compressed air quality within a facility please reach out to any Application Engineer at EXAIR.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 – Air – Creative Commons – Tsurutea Yosuke – https://www.flickr.com/photos/tsurutayosuke/47732716442/in/photolist-2fHYDBG-dd5e5z-5snidD-oaU8fm-68kqiz-8sMG3P-fnqYx7-9bkTrx-5P2BDv-6R75dG-9vi5xL-5yADR-8EAFci-9NQvER-8sMGoR-4Uybwo-9bNqfB-6N9qf8-6LZyG-7MF4aZ-dehz3-5h1wXk-6uJWNq-7eQCUU-6qoUm6-8sQHxo-uqDdE-6NDHW3-8sQMDQ-7wyCsV-dd5io5-5yAwX-ZmCdh2-BMZCW-agSno-bQ8UFK-6d8Pkz-ars544-novykD-3PF1FT-W13jE9-3GSRLj-7r9Msu-6yn1Ne-32iJKf-7CPqWv-8qhcn-4Eicvh-LLgb4-54ixko

2 – DSC_0750 – Creative Commons – David Grant – https://www.flickr.com/photos/zub/24340293/in/photolist-39Kwe-2cZxjuw-6ywctR-26b7Z2F-84vqJN-bpjRN3-6aDzQR-i84BUr-xbu1Us-fxyvn-5UPDBh-VDz7nD-8Be4fP-a6MVGC-nP4end-PA5nb9-3ddwtq-nRF2yr-j4XPzo-cd5CvJ-eoGFTQ-rYNapy-pKAJpQ-pVrbq6-21hFhHB-n8hpva-7uMwPs-4EZ9ok-jGahK-foR798-JP9rcG-cMRjhu-i74Qo-2d1nE-7nXj3e-9tMib1-6JrXP-9tMdnd-4o5ZCx-6uk2LG-9Gt8K4-5xksdV-9tJgMa-9tMh8b-kkZNy5-c8oM8C-8reqky-4KXe87-aFt7kn-MNNDwU

Putting In The Work: No Matter Where

Last week I was on vacation with my wife’s family.  We had the good fortune of going to Lake Norman, NC and renting a house for everyone to stay in.   While vacation was on a lake and we all had a boat load of fun (mainly because we had a pontoon boat for a week).  Work still needed to get done.   This wasn’t work from the Application Engineering position here at EXAIR.  This work was physically more difficult.

This was training for an event I will be doing hopefully within the next year.  I’ve been attending a Tuesday morning workout for the past six months or so with two other men, who are both Marine veterans and I thank them for their service.  This work we put in on Tuesday morning and a few other random times throughout the week is all for the same events.   The events are put on by a company called GORUCK.  (Yes, just like EXAIR, it is all CAPS all the time, one word.)  These events are classified as endurance events and are lead by either an active or retired Special Forces cadre.  There are different versions but they are all heald to the same standard for participants.  Put in the work, rely on your team, and everyone will get through it together.

At most of the events very few people know each other that well.  This makes forming a team within the few hours you are together very difficult.  That is until you are under a time hack when everyone has their weighted ruck on their back, you have a few hundred extra pounds of sand bags to carry and because it is fun to watch the Cadre gives you a casualty that now has to be buddy carried.  The main focus is to get people of all walks of life, all abilities, all physical aptitudes to come together, build into one another, and make sure everyone is at the end getting a patch to wear on their ruck.

This is why, on every Tuesday I try to put in some hard work mixed in with a lot of stairs.   While I was on vacation and could have easily let that weekly training go, I didn’t.  Instead I got out a deck of cards for the number of reps to each exercise, grabbed a 60 lbs and 40 lb sandbag and went to the tallest section of stairs we had close by, the dock stairs.

While going through the exercises, panting and glistening (for those that don’t know that’s the fancy word for seriously sweating), my youngest daughter came down to “help” me workout.  The look on her face was at first confusion, then after a brief talk and explaining I am trying to better myself by doing this, she switched to full on support.

Burpees have never felt so good until you have a 4 year old cheering you on.  Once I was done with all of my reps and had made over 6 trips up and down the steps with the 60 lb. sandbag I carried my sandbags and followed her in to the house for some well deserved breakfast.

This work could have been easily pushed to the side and not completed.  Instead, I embraced it and did it.  I was going to do the work even if anyone wasn’t watching because I want to better myself so that I may better any team that I am part of.

This same level of dedication is put in to everything we do here at EXAIR.  Customer service, production, assembly, product design, order entry, accounting, and marketing all dedicate to ensure that we fill the needs of our customers because we want to become a strong part of their team.   Whether it means digging deeper on testing a product in order to get some data at different operating pressure, or creating a 100% custom product that we have never manufactured before, we dedicate to the customer and ensure that all possibilities are exhausted so that the customer and EXAIR can both succeed.

If you have any questions about how EXAIR can help your team to reduce compressed air consumption, increase plant efficiency, and save energy through compressed air usage, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Supply Side Review: Deliquescent Type Dryers

As mentioned in my post last week.  The supply side of compressed air systems within a facility is critical to production.  The quality of air produced by your compressor and sent to the demand side of the system needs to be filtered for both moisture and particulate.  One method to dry the air, that is the topic for this blog, is deliquescent type dryers.

These dryers operate like an adsorbent dryer such as a desiccant medium dryer.  The main variance is that the drying medium (desiccant) actually undergoes a phase change from solids to liquids.  Because of this the material is used up and cannot be returned to its original state for reuse.   The liquids formed by the desiccant dissolving in the removed water vapor are then filtered out of the air stream before it is passed on to the demand side of the air system.

There are many compounds that are used to absorb the moisture in the wet compressed air.  A few options are potassium, calcium, or sodium salts and many that contain a urea base.  The desiccant compound must be maintained at a minimum level for the dryer to contain enough media to successfully dry the air.

These dryers are generally a single tank system that is fed with compressed air from a side port near the bottom of the tank.  The air then travels up past drip trays where the desiccant and water mixture fall and ultimately ends up in the bottom of the tank.  The air then goes through a material bed that must be kept at a given level in order to correctly absorb the moisture in the air.  The dry air is then pushed out the top of the tank.

As the desiccant material absorbs the liquid from the compressed air flowing through the tank it falls onto the drip trays and then into the bottom of the tank where it is drained out of the system.  This process can be seen in the image below.

 

Deliquescent type compressed air drying system
How a deliquescent air dryer works – 1(VMAC Air Innovated, 2017)

 

The dew point that this style dryer is able to achieve is dependent on several variables:

  • Compressed air temperature
  • Compressed air pressure / velocity
  • Size and configuration of the tank
  • Compression of the absorption media
  • Type of absorption media and age of media

These dryers are simplistic in their design because there are no moving parts as well as easy to install and carry a low startup cost.

Some disadvantages include:

  • Dewpoint range 20°F – 30°F (Again this is according to the media used.)
  • Dissolved absorption material can pose a disposal issue as it may not be able to be simply put down a drain
  • Replacement of the absorption material

Even with disadvantages the ability to supply the demand side of a compressed air system for a production facility is key to maintaining successful operations.  If you would like to discuss any type of compressed air dryer, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

1 – Deliquescent Dryer Image: VMAC Air Innovated: The Deliquescent Dryer – https://www.vmacair.com/blog/the-deliquescent-dryer/

 

Is PVC Pipe Alright to Use with Compressed Air?

A question arises every now and then on whether or not PVC pipe, yes the stuff from your local hardware store that says it is rated for 200 psi, is safe to use as compressed air supply line.   The answer is always the same,  NO! OSHA agrees – see their statement here.

Schedule 40 PVC pipe is not designed nor rated for use with compressed air or other gases.  PVC pipe will explode under pressure, it is impacted significantly by temperature and can be difficult to get airtight.

PVC pipe was originally designed and tested for conveyance of liquids or products that cannot be compressed, rather they can be pressurized.   The largest concern is the failure method of the piping itself.   When being used with a liquid that cannot be compressed, if there is a failure (crack or hole) then the piping will spring a leak and not shatter.   When introducing a compressed gas, such as compressed air, if there is a failure the method ends up being shrapnel.  This YouTube video does a good job of illustrating how the pipe shatters.

While it may seem that it takes a good amount of pressure to cause a failure in the pipe, that is often not the case.  I have chatted with some local shop owners who decided to run PVC as a quick and cheap alternative to get their machines up and running.

They each experienced the same failures at different points in time as well.  The worst one was a section of PVC pipe installed over a workbench failed where an operator would normally be standing. Luckily the failure happened at night when no one was there.  Even though no one got injured this still caused a considerable expense to the company because the compressor ran overnight trying to pressurize a ruptured line.

Temperature will impact the PVC as well. Schedule 40 PVC is generally rated for use between 70°F and 140°F (21°-60°C). Pipes that are installed outside or in non temperature controlled buildings can freeze the pipes and make them brittle.

If you haven’t worked with PVC before or do not let the sealant set, it can be hard to get a good seal, leading to leaks and a weak spot in the system.

The point of this is the cheapest, quick, and easy solutions are more often , the ones that will cost the most in the long run.

If you would like to discuss proper compressed air piping and how to save compressed air on your systems, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Image courtesy of: Dennis Hill, Creative Commons License

Video Blog: EXAIR’s Soft Grip Super Air Scraper

The video below showcases a new EXAIR product, the Soft Grip Super Air Scraper. This combines the comfort of a Soft Grip Safety Air Gun with the powerful air stream of the 2″ Flat Super Air Nozzle and adds the scraping ability of a handheld scraper all in one convenient package.

If you would like to discuss your application, please contact us.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF