Pressure Profile: Where to Measure Your Air Pressure

Generic Layout drawing of compressed air piping system.

In order to fully understand how efficient your compressed air system may be, you will need to generate a system pressure profile at some point.   This is a list or diagram of what pressures you have in your compressed air system at specific locations, as well as the pressure required by all the demand devices on your compressed air system.

One of the reasons for the pressure profile is that you may have an application that is far away from the compressor but also highly dependent on a specific operating pressure.   You may also find an application that, due to pressure losses within the system, causes an artificially high pressure demand.

The list below gives the critical points for measuring your compressed air system profile.

  1. At the air compressor discharge. (If using multiple compressors, measure at each.)
  2. If dryers of any type are being used after the compressor measure downstream from the dryer.
  3. Downstream of each filter. (If a particulate filter and oil removal filter are being used it is best to measure downstream of each individual device.   This is to tell when you have more than a 5 psig pressure drop or a clogged filter.)
  4. After each intermediate storage device, such as receiver tanks.
  5. At the point just before the main line from your compressor room branches off to distribution.
  6. The furthest point of each header line you have installed.
  7. On both sides of every filter/regulator units that are at high pressure point of use applications.

To give you an idea of why it is so important to measure these locations, take a look at the blogs we have posted on pressure drop. (Link Here)  As you can tell by the list of blogs that comes up, pressure drop through piping can really cause a lot of wasted energy in your compressed air system.   If you can get a good base line measurement by utilizing a pressure profile then you can start the process to optimizing your compressed air system.

6 steps
The EXAIR Six Steps To Optimizing Your Compressed Air System.

 

If you would like to discuss this or any of the other 6 steps to compressed air optimization, feel free to contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Back To The Basics (of compressed air)…And The Track

The past several weeks I have been finding myself doing things the more complicated way (I  know how that sounds odd – an engineer that prefers to do things the hard way). Over the weekend I took a brief ride on the motorcycle for a short 15 minute trip that I found to be satisfying, even if it is less direct and a more out-of-the-way route for getting my errands complete.   The route runs past the local university of Mount Saint Joseph, down a winding road that has no houses and only one business, the rest is all woods and a creek.  Finally, this route runs along the mighty Ohio river and back up a steep winding road near my house.

While I have been worrying about all the projects and errands which need to be completed, this more complicated route gives me a moment to decompress and remember that my family at home and few other things are all I need.  Once  I was reminded of that and got some perspective which allowed me to “keep calm and carry on” I proceeded to break my projects and errands down into smaller pieces and everything will start to come together.

I now have a to do list at home as well as a refreshed list at EXAIR of all the items I need to do.   The list at home is considerably more fun as it all involves getting my “new to me” track bike ready for this season.  20140506_134512That’s right, it’s right around the corner, the first track weekend of 2014.  So expect to see some more motorcycle blogs coming and hopefully more ways to use EXAIR products while working on them. It was these newly developed lists that helped me reorganize and get back on track for the new season, sometimes a list is necessary in order to gain perspective, prioritize and begin to take action.

On that note, EXAIR has a list to help you gain perspective, prioritize and take some action toward getting your compressed air system optimized. Our systematic approach using the Six Steps To Compressed Air Optimization has been developed to help you save your compressed air,your hearing, and your money. By following these steps you can lower your compressed air use, minimize workplace noise exposure (OSHA will be happy) and save money on this important utility.

6 steps

 

If you have ever thought of reducing your compressed air costs, use our list to help you gain perspective on this simple process and take some positive steps toward saving your facility some money.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Compressed Air Calculations, Optimization, and Tips

EXAIR uses our blog platform to communicate everything from new product announcements to personal interests to safe and efficient use of compressed air. We have recently passed our 5 year anniversary of posting blogs (hard for us to believe) and I thought it appropriate to share a few of the entries which explain some more of the technical aspects of compressed air.

Here is a good blog explaining EXAIR’s 6 steps to optimization, a useful process for improving your compressed air efficiency:


One of the Above 6 steps is to provide secondary storage, a receiver tank, to eliminate pressure drops from high use intermittent applications. This blog entry addresses how to size a receiver tank properly:

Here are 5 things everyone should know about compressed air, including how to calculate the cost of compressed air:

These next few entries address a common issue we regularly assist customers with, compressed air plumbing:

In a recent blog post we discuss how to improve the efficiency of your point of use applications:

Thanks for supporting our blog over the past 5 years, we appreciate it. If you need any support with your sustainability or safety initiatives, or with your compressed air applications please contact us.  

Have a great day,
Kirk Edwards
@EXAIR_KE

Improve Your Compressed Air System: Improve Point of Use Applications

While compressor controls and efficiency are an important part of any comprehensive compressed air audit, so too, are your point of use applications. Many times these point of use locations are quickly and inexpensively improved. The first step is to identify which area of your system you would like to improve first. Certainly you will have that “problem area”, the part of the plant you know is using compressed air more than it should. This area of your plant is usually outfitted with open tubes that have the ends crimped down as a homemade nozzle or the operators are using blow-guns with commercial grade nozzles or worse yet, no nozzle at all. It’s the area of the plant that may require hearing protection due to the loud hissing of air or where that pipe with drilled holes was the quickest and cheapest fix for the application (or so you thought).

Document these areas of the plant and address these points of use by measuring the current consumption. Many times, we find, the volume of air provided by open tubes, inefficient nozzles and drilled pipes is much more than is required for the application.  Accurate compressed air measurement will be important to properly calculate the compressed air cost and savings. These points of use can be retrofitted or optimized in a couple of ways. First, you can retrofit open tubes by placing a compression fitting and engineered air nozzle on it. This will both reduce the air consumption and noise levels within the plant. Drilled pipes have holes, or slots, along the length to provide a wide area blow off. These applications can show dramatic improvement by using compressed air knives or air amplifiers which are engineered to reduce air consumption, reduce noise and maintain OSHA Compliance for dead end pressure. The second way to improve these end use applications is to install pressure regulators and lower the end use pressure which will result in lower air use.

Don’t let these end use applications go unchallenged, just because they were this way when you joined the firm does not mean they should not, or cannot be improved upon. If you get the right folks involved and keep them updated about the actions or changes you are making, you will find advocates for the projects. Remember that quantifying the savings is key so don’t start without measuring how much air you are currently using at these problem areas. Flow meters on each leg of your system or at specific high use areas of the plant will prove invaluable to providing data expressed in dollars of savings to those making decisions within your firm. The compressed air supply side personnel will also be helpful in locating or prioritizing where to start saving compressed air. Keep employees and management informed of savings and improvements and the savings ball will have more potential to keep on rolling.

Remember:

  • Measure – baseline the current conditions of compressed air use with flow meters
  • Upgrade – retrofit inefficient open blow offs, commercial grade nozzles, drilled pipes etc. with engineered  and intelligent compressed air products
  • Control air pressure – lower pressure results in lower air consumption

If you would like any assistance or support to improve your compressed air system, we’re here to help.

Kirk Edwards
Application Engineer
@exair_ke