Step 2 of Optimizing Your Compressed Air System, Find & Fix Leaks

Over the past handful of blog posts I have blogged about topics like understanding the demand on your compressor, creating a system pressure profile,  and the effectiveness of filtering your compressed air.  These are all critical steps in ensuring your compressed air system is optimized for maximum efficiency.   These can also all fall into place with our Six Steps To Compressed Air Optimization.

EXAIR Six Steps To Optimizing Your Compressed Air System
EXAIR Six Steps To Optimizing Your Compressed Air System

Another factor in the six steps is identifying and addressing leaks within your system.   Finding leaks in your compressed air system can be done several ways, one of the oldest methods is to use a soap and water mixture to spray on every joint and see if there is a leak that causes bubbles.   The next method would be to use ball valves and pressure gauges to test each run of pipe to ensure they are holding their pressure over a period of time, similar to a leak down test.  The final method, and by far the easiest, would be to utilize our Ultrasonic Leak Detector.

This can be used to sense leaks in compressed air systems up to 20′ away and can also pin point a leak by closely monitoring each joint.  Neal Raker made a great video on how to use the Ultrasonic Leak Detector a while back and it is shown below.

If you have any questions on how to find leaks or how to optimize your compressed air system, give us a call.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Pressure Profile: Where to Measure Your Air Pressure

Generic Layout drawing of compressed air piping system.

In order to fully understand how efficient your compressed air system may be, you will need to generate a system pressure profile at some point.   This is a list or diagram of what pressures you have in your compressed air system at specific locations, as well as the pressure required by all the demand devices on your compressed air system.

One of the reasons for the pressure profile is that you may have an application that is far away from the compressor but also highly dependent on a specific operating pressure.   You may also find an application that, due to pressure losses within the system, causes an artificially high pressure demand.

The list below gives the critical points for measuring your compressed air system profile.

  1. At the air compressor discharge. (If using multiple compressors, measure at each.)
  2. If dryers of any type are being used after the compressor measure downstream from the dryer.
  3. Downstream of each filter. (If a particulate filter and oil removal filter are being used it is best to measure downstream of each individual device.   This is to tell when you have more than a 5 psig pressure drop or a clogged filter.)
  4. After each intermediate storage device, such as receiver tanks.
  5. At the point just before the main line from your compressor room branches off to distribution.
  6. The furthest point of each header line you have installed.
  7. On both sides of every filter/regulator units that are at high pressure point of use applications.

To give you an idea of why it is so important to measure these locations, take a look at the blogs we have posted on pressure drop. (Link Here)  As you can tell by the list of blogs that comes up, pressure drop through piping can really cause a lot of wasted energy in your compressed air system.   If you can get a good base line measurement by utilizing a pressure profile then you can start the process to optimizing your compressed air system.

6 steps
The EXAIR Six Steps To Optimizing Your Compressed Air System.

 

If you would like to discuss this or any of the other 6 steps to compressed air optimization, feel free to contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF