Silencing Mufflers

I live near an amusement park called Kings Island. In the later part of Spring I can hear and see the people and rides. As the Summer enters and the tree leaves have all grown they act like a muffler reducing the roller coaster noises and screaming people on the roller coasters. These trees are not high enough to block the nightly fireworks but this is a good thing for me as I enjoy the sights and sounds of the fireworks.

An important focus in every manufacturing environment is a “Noise Reduction” campaign making a safer and healthier area for people working in the environment. EXAIR has Silencing Mufflers that can support your efforts for noise reduction. We have a variety of mufflers which will help to reduce work area noise produced by air exhausting from cylinders, valves and other air powered equipment. EXAIR Silencing Mufflers help plants meet OSHA Standard 1910.95(a) by reducing the sound to safer levels. Not only do our Silencing Mufflers reduce sound but they also eliminate harmful dead end pressures by covering up an open port or opening. These openings do not have a pathway for harmful pressurized air to escape if they become blocked.

Sintered Bronze Mufflers: A low cost solution and easy to install in new and existing air powered products. Sintered bronze muffler come in a variety of sizes (10-32 thread size up through 1/2-20 UNF female) and are capable of passing a certain volume of air with minimal back pressure restriction.

Reclassifying Mufflers: These mufflers are an upgrade from Sintered Bronze Mufflers. They offer the best noise reduction, up to 35 decibels. Available from 1/8 NPT up to 1 NPT. Reclassifying Muffles also eliminate oil mist. The patented wrap design of the removable element separates oil from the exhausted air so virtually no oil is released into the environment.

Straight-Through Mufflers: These mufflers offer a corrosion resistant aluminum outer shell lined with sound absorbing foam for better noise reduction. The typical noise reduction is up to 20dB.

Heavy Duty Mufflers: feature a corrosion-resistant aluminum outer shell with an internal stainless steel screen that protects valves and cylinders from contamination that could enter through the exhaust ports. The typical noise reduction is up to 14 dB.

EXAIR can help in your noise reduction projects with many options to consider. If you have any questions or need help selecting the right muffler for your needs please contact any of our qualified Application Engineers.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Dead Serious About Dead End Pressure and Chip Guarding – OSHA 1910.242(b)

Compressed air is a very versatile utility that can be used for applications in cooling products to cleaning off workspaces and products. That is where OSHA 1910.242(b) comes into play; this OSHA standard states that compressed air used for cleaning shall not be used except were reduced to less than 30 psi and then only with effective chip guarding and personal protective equipment. This standard is in place because in the event a dead end occurs, the static pressure at the main orifice can potentially force the high pressure air into someone’s bloodstream and cause an air embolism, which if left untreated can impede the flow of blood in the body and lead to a fatality.

Keeping that in mind there are two ways you can go about these cleaning applications and still stay in compliance with the OSHA standard. The first way is to regulate the air pressure in your pipe down to below 30 psig. But for the majority of applications this is not an effective solution as pressure does equate to the amount of force that can be produced from the system. The second solution is to use a nozzle that is engineered in a way the it cannot be dead ended. This means that the nozzle is designed in a way that no matter how hard you try the air coming out of the nozzle will be ejected into the atmosphere and not through skin.

The fins of the Super Air Nozzle allow air to escape and prevent dead-ending the nozzle.

Take EXAIR’s Air Nozzles for example, the fins and orifice placement are designed in a way that allows air escape air into the atmosphere. Once air has exited an orifice into atmospheric conditions the pressure becomes 0 psig but retains the velocity and higher volume from the higher compressed air inlet pressure which produces force.

Model 1210 Soft Grip Safety Air is fitted with an EXAIR Super Air Nozzle. We can also supply it with a Rigid Extension and Chip Shield (right).

In addition, OSHA 1910.242(b) also talks about the use of effective chip guarding, which simply means some method or equipment shall be installed that prevents particles from flying back and hitting the operator. If you look EXAIR’s Safety air guns you will notice that we offer Chip Shields. By simply adding “-CS” to the end of a part number for a Safety Air Gun you can help prevent injuries from flying particles in blow off applications.

If you have any questions or want more information on compressed air safety and OSHA related standards. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Save Your Compressed Air Today with These Simple Methods

When discussing ROI, return on investment, for an industrial compressed air system it is necessary to  understand what it costs to produce compressed air.  Generally we calculate that it costs .25 cents to produce 1,000 SCF (Standard Cubic Feet) of compressed air here in the Midwest of the United States. For our example let’s consider a typical 250 HP industrial compressor running 24 hours per day/5 days per week for 52 weeks.  This compressor can generate 374,400,000 SCF per year, using the industry standard utility cost for the Midwest of .25 cents per 1,000 SCF it will cost $93,600 to produce that volume of compressed air.

To avoid wasting money on compressed air generation it is extremely important to eliminate unintended or wasteful compressed air use in your plant. The two main offenders are leaks and open tube blow-offs.  While soapy water is a good method for discovering leaks, EXAIR offers the Ultrasonic Leak Detector.  This handy device allows leaks to be detected at distances of up to 20′ away! Also consider how safe and convenient it is to find leaks in overhead pipes while standing on the ground instead of on a ladder. Using a tool like this to do an entire system leak audit can easily result in many small leaks being identified and when fixed result in a large savings.

open tubes
Thirteen Open Tube Blow-Offs

Now let’s look at what an open pipe or tube may consume. A single 1/4″ OD copper tube can use 33 SCFM @ 80 PSIG inlet pressure.  Using the manifold pictured above as our example with 13 open tubes, each tube can consume 33 SCFM @ 80 PSI inlet pressure. With 13 open tubes running 24 hours a day, 5 days a week, 52 weeks per year equates to a total consumption of  160,617,600 SCF annually.  If we installed the EXAIR model 1100 Super Air Nozzle  using a simple compression fitting we would reduce the air consumption dramatically.  The EXAIR 1100 Super Air Nozzle consumes 14 SCFM @ 80 PSIG inlet pressure, running 24 hours a day, 5 days a week, 52 weeks per year equates to a total consumption of 68,140,800 SCF annually.  That change will save you 92,476,800 SCF annually which is equal to $23,119.20 and 24.7% of air compressor capacity!  These calculations are all based on continuous running applications, if intermittent operation is possible consider the EXAIR Electronic Flow Control for even greater savings.  The EXAIR Electronic Flow Control combines a photoelectric sensor with timing control that limits compressed air use by turning it off when no part is present

Open pipe blow offs also violate OSHA standard 29 CFR 1910.242(b) requirement for using compressed air for cleaning when pressurized above 30 PSIG. Not to mention they generally are louder than 90 dBA, which is the maximum allowable noise exposure without hearing protection under OSHA standard 29 CFR – 1910.95 (a). The EXAIR engineered Super Air Nozzle is a great way to avoid a OSHA fine.

A great product that will help you keep your fingers on the pulse of compressed air consumption and demand is by incorporating the EXAIR Digital Flow Meter.  This handy item mounts directly to the pipe.  The digital display shows the amount of compressed air being used in any leg of your distribution system.  The Digital Flow Meter is offered in sizes for 1/2″ – 4″ Schedule 40 Iron Pipe and 3/4″ – 4″ Copper Pipe.  It also is available with the Summing Remote Display that is prewired with a 50′ cable, it is powered by the Digital Flow Meter and with a push of the button will display either the current compressed air consumption, consumption for the previous 24 hours or the total cumulative usage.

The Digital Flowmeters are also available with wireless capability using the ZigBee mesh network protocol, data can be passed from meter to meter to extend the distance over which the wireless system can operate.  Each meter has a range of up to 100′ (30 meters). Or you can opt for the USB Data Logger option.  The USB Data Logger can store approximately 9 hours of readings if set to sample once every second or up to 2 years if sampled every 12 hours.

If you would like to talk about any of the quiet EXAIR Intelligent Compressed Air® products or our line of Optimization Products, feel free to contact me or any EXAIR  Application Engineer.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Two Important Safety Factors When Choosing Air Nozzles

At EXAIR, we have a statement, “Safety is everyone’s responsibility”.  And we also manufacture safe compressed air products.  In the United States, we have an organization called Occupational Safety and Health Administration, OSHA, that enforces directives for safe and healthy working environments.  They do training, outreach programs, and educational assistance for manufacturing plants.  They will also enforce these directives with heavy fines for violations.  The two most common violations with compressed air are air guns and blow-off devices are described in 29CFR 1910.242(b) for dead-end pressure/chip shielding and 29CFR 1910.65(a) for maximum allowable noise exposure.

Here is an example of a nozzle that is dangerous.  As you can see, there is only one opening where the air can come out from the nozzle.  Other types of nozzles that would fall into this same group would include copper tube, extensions, and open pipes.

Unsafe Nozzle

They are dangerous as the compressed air cannot escape if it is blocked with your body or skin.  If operated above 30 PSIG (2 bar), these nozzles could create an air embolism within the body which can cause bodily harm or death.  This is a hazard which can be avoided by using EXAIR Super Air Nozzles and Safety Air Guns.  The nozzles are designed with fins which allows the air to escape and not be blocked by your skin.  So, you can use the EXAIR Super Air Nozzles safely even above 30 PSIG (2 bar).

Unsafe Air Gun

To counteract the dead-end pressure violation, some nozzle manufacturers create a hole through the side of the nozzle (Reference photo above).  This will allow for the compressed air to escape, but, now the issue is noise level.  With an “open” hole in the nozzle, the compressed air is very turbulent and very loud.  The National Institute for Occupational Safety and Health, NIOSH, states that 70% to 80% of all hearing loss within a manufacturing plant is caused by compressed air.  OSHA created a chart to show the maximum allowable noise exposure.  This chart shows the time and noise limits before requiring hearing protection.  The EXAIR Super Air Nozzles, Super Air Knives, Super Air Amplifiers are designed to have laminar flow which is very quiet.  As an example, the model 1210 Safety Air Gun has a sound level of only 74 dBA; well under the noise exposure limit for 8 hours.

Hearing loss is the best known, but not the only, ill effect of harmful noise exposure. It can also cause physical and psychological stress, impair concentration, and contribute to workplace accidents or injuries.

NIOSH created an overview of how to handle hazards in the workplace.  They call it the Hierarchy of Controls to best protect workers from dangers.  The most effective way is by eliminating the hazard or substituting the hazard.  The least effective way is with Personal Protective Equipment, or PPE.  For unsafe compressed air nozzles and guns, the proper way to reduce this hazard is to substitute it with an engineered solution.

One of the last things that companies think about when purchasing compressed air products is safety.  Loud noises and dead-end pressure can be missed or forgotten.  To stop any future fines or additional personal protective equipment (PPE), it will be much cheaper to purchase an EXAIR product.  And with the Hazard Hierarchy of Controls, the first method is to remove any hazards.  The last method for control is to use PPE.  In the middle of the hierarchy is for an engineered solution.  EXAIR products are that engineered solution.  If you would like to improve the safety in your facility with your current blow-off devices, an Application Engineer can help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Picture:  Safety First by SuccoPixabay License