6 Steps to Optimizing Your Compressed Air System

If you’re a follower of the EXAIR Blog, you’re probably well aware that compressed air is the most expensive utility in an industrial environment. The average cost to generate 1000 Standard Cubic Feet of compressed air is $0.25. If you’re familiar with how much air you use on a daily basis, you’ll understand just how quickly that adds up.

To make matters worse, many compressed air systems waste significant amounts of compressed air just through leaks. According to the Compressed Air Challenge, a typical plant that has not been well maintained will likely have a leak rate of approximately 20%!! Good luck explaining to your finance department that you’re carelessly wasting 20% of the most expensive utility.

SBMart_pipe_800x

6 Steps from Catalog

The best way to save energy associated with the costs of generating compressed air is pretty straightforward and simple: TURN IT OFF! Placing valves throughout your distribution system allows you to isolate areas of the facility that may not need a supply of compressed air continuously.

Even a well-maintained system is going to have a leakage rate around 10%, it’s darn near impossible to absolutely eliminate ALL leaks. By having a valve that allows you to shut off the compressed air supply to isolated areas, you’re able to cut down on the potential places for leaks to occur.

You’re likely not running each and every machine continuously all day long, if that’s the case why not shut off the air supply to those that aren’t running? When operators go to lunch or take a break, have them turn off the valves to prevent any wasted air. The fact of the matter is that taking this one simple step can truly represent significant savings when done diligently.

You wouldn’t leave your house with all the lights and TV on, so why leave your compressed air system running when it’s not in use? Even if everyone’s left for the day, leaks in the system will cause the compressor to keep running to maintain system pressure.

Taking things one step further, EXAIR’s Electronic Flow Control (EFC) utilizes a solenoid controlled by photoelectric sensor that has the ability to shut off the compressed air when no part is present. If you’re blowing off parts that are traveling along a conveyor with space in between them, there’s no need to continuously blow air in between those parts. The EFC is able to be programmed to truly maximize your compressed air savings. The EFC is available in a wide range of different capacities, with models from 40-350 SCFM available from stock and systems controlling two solenoid valves for larger flowrates available as well.

newEFC2_559

It’s no different than turning off your house lights when you leave for work each day. Don’t get caught thinking compressed air is inexpensive “because air is free”. The costs to generate compressed air are no joke. Let’s all do our part to reduce energy consumption by shutting off compressed air when it isn’t necessary!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Air Entrainment & EXAIR’s Intelligent Compressed Air Products

Air entrainment is a term that we bring up quite often here at EXAIR. It’s this concept that allows many of our products to dramatically reduce compressed air consumption. The energy costs associated with producing compressed air make it an expensive utility for manufacturers. Utilizing engineered compressed air products that will entrain ambient air from the environment allow you to reduce the compressed air consumption without sacrificing force or flow.

Entrainment
EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Products such as the Super Air Knife, Super Air Nozzle, Air Amplifier, and Super Air Wipe all take advantage of “free” air that is entrained into the primary supplied airstream. This air entrainment occurs due to what is known as the Coanda effect. Named after renowned Romanian physicist, Henri Coanda, the Coanda effect is used in the design of airplane wings to produce lift. As air comes across the convex surface on the top, it slows down creating a higher pressure on the underside of the wing. This creates lift and is what allows an airplane to fly.

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

This is also the same principle which is allowing us to entrain ambient air. As the compressed air is ejected through a small orifice, a low-pressure area is created that draws in additional air. Our products are engineered to maximize this entrained air, creating greater force and flow without additional compressed air. Super Air Amplifiers and Super Air Nozzles are capable of up to a 25:1 air entrainment ratio, with just 1 part being the supplied air and up to 25 times entrained air for free!! The greatest air entrainment is achieved with the Super Air Knife at an incredible ratio of 40:1!

This air entrainment principle allows you to utilize any of these products efficiently for a wide variety of cooling, drying, cleaning, or general blowoff applications. In addition to reducing your compressed air consumption, replacing inefficient devices with engineered products will also dramatically lower your sound level in the plant. Sound level in some applications can even be reduced down to a point that would eliminate the need for hearing protection with the OSHA maximum allowable exposure limits set at 90 dBA for an 8-hour shift.

If you have inefficient blowoff devices in your facility, give us a call. An Application Engineer will be happy to help you select a product that will “quietly” reduce your compressed air consumption!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

“Go Green” in 2019 With EXAIR’s Super Air Nozzles & Jets!

If one of your New Year’s resolutions for 2019 is to help improve your impact on the environment, look no further than EXAIR’s Engineered Air Nozzles & Jets. By upgrading your blowoff, cooling, and drying operations to use one of our Super Air Nozzles or Jets you can save as much as 80% of your compressed air usage when compared with an inefficient solution.

open tubes
Example of a manifold of open pipes

An open copper pipe or tube, even if “flattened” as we’ll commonly see, wastes an excessive amount of compressed air. This wasted compressed air can create problems in the facility due to unnecessarily high energy costs and the pressure drop that can be experienced affecting other processes. In addition to simply using too much compressed air, an open pipe or tube will often produce sound levels in excess of 100 dBA. At these sound levels, according to OSHA, permanent hearing damage will occur in just 2 hours of exposure.

OSHA Chart

By simply replacing the open tubes and pipe with an EXAIR Super Air Nozzle, you can quickly reduce air consumption AND reduce the sound level. Sound level isn’t the only thing an OSHA inspector is going to be concerned about regarding an open pipe blowoff, in addition OSHA 1910.242(b) states that a compressed air nozzle used for blowoff or cleaning purposes cannot be dead-ended when using with pressures in excess of 30 psig. I don’t know if you’ve ever tried to use an air gun with 30 psig fed to it, but the effectiveness of it is dramatically reduced. This is why there needs to be a device installed that’ll prevent it from being dead-ended so that you can operate at a higher pressure.

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

EXAIR’s Super Air Nozzles are designed with fins that serve two purposes. They help to entrain ambient air from the environment, allowing us to maximize the force and flow from the nozzle but keeping the compressed air consumption minimal. In addition, these fins are what prevents the nozzle openings from being completely blocked off. Using an OSHA compliant compressed air nozzle for all points where a blowoff operation is being performed should be a priority. Each individual infraction will result in a fine if you’re subject to an OSHA inspection. Inspections are typically unannounced, so it’s important to take a look around your shop and make sure you’re using approved products.

sag-osha-compliant
The fins along the outside of the Super Air Nozzle prevent it from being dead-ended

So, go ahead and make 2019 the year of energy savings, increased efficiency, and improving worker safety. You’ll find all of the tools you need in EXAIR’s 32nd edition of the catalog. Click here if you’d like a hard copy sent directly to you! Or, get in touch with us today to find out how you can get saving with an Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Intelligent Compressed Air: Maintaining an Efficient Compressor System

compressor

The electrical costs associated with generating compressed air make it the most expensive utility in any industrial facility. In order to help offset these costs, it’s imperative that the system is operating as efficiently as possible. I’d like to take a moment to walk you through some of the ways that you can work towards making your compressed air system more efficient.

The first step you should take is to identify and fix any leaks within the distribution piping. According to the Compressed Air Challenge, up to 30% of all compressed air generated is lost through leaks. This ends up accounting for nearly 10% of your overall energy costs!! To put leaks in perspective, take a look at the graphic below from the Best Practices for Compressed Air Systems handbook.

air leaks cost

Compressed air leaks don’t just waste energy, but they can also contribute to other operating losses. If enough air is lost through leaks, this can also cause a drop in system pressure. This can affect the functionality of other compressed air operated equipment and processes. This pressure drop can affect the efficiency of the equipment causing it to cycle on/off more frequently or to not work properly. This can lead to anything from rejected products to increased running time. With an increase in running time, there’s also the need for more frequent maintenance and unscheduled downtime.

You can perform a compressed air audit in your facility using an EXAIR Model 9061 Ultrasonic Leak Detector. If you’d prefer someone come in and do this for you, there are several companies that offer energy audit services where this will be a focal point of the process.

ultrasonic_2
EXAIR Ultrasonic Leak Detector

Speaking of maintenance, proper compressor maintenance is also critical to the overall efficiency of the system. Like all industrial equipment, a proper maintenance schedule is required in order to ensure things are operating at peak efficiency. Inadequate compressor maintenance can have a significant impact on energy consumption via lower compressor efficiency. A regular preventative maintenance schedule is required in order to keep things in good shape. The compressor, heat exchanger surfaces, lubricant, lubricant filter, air inlet filter, and dryer all need to be maintained. This can be done yourself or through a reputable compressor dealer. The costs associated with these services are outweighed in the improved reliability and performance of the compressor. A well-maintained system will not cause unexpected shutdowns and will also cost less to operate.

The manner in which you use your compressed air at the point of use should also be evaluated. Inefficient, homemade solutions are thought to be a cheap and quick solution. Unfortunately, the costs to supply these inefficient solutions with compressed air can quickly outweigh the costs of an engineered solution. An engineered compressed air nozzle such as EXAIR’s line of Super Air Nozzles are designed to utilize the coanda effect. Free, ambient air from the environment is entrained into the airflow along with the supplied compressed air. This maximizes the force and flow of the nozzle while keeping compressed air usage to a minimum.

Another method of making your compressed air system more efficient is actually quite simple: regulating the supply pressure. By installing pressure regulators at the point of use for each of your various point of use devices, you can reduce the consumption simply by reducing the pressure. This can’t be done for everything, but I’d be willing to bet that several tasks could be accomplished with the same level of efficiency at a reduced pressure. Most shop air runs at around 80-90 psig, but for general blowoff applications you can often get by operating at a lower pressure. Another simple, but often overlooked, method is to simply shut off the compressed air supply when not in use. If you haven’t yet performed an audit to identify compressed air leaks this is even more of a no-brainer. When operators go to lunch or during breaks, what’s stopping you from just simply turning a valve to shut off the supply of air? It seems simple and minute, but each step goes a long way towards reducing your overall air consumption and ultimately your energy costs.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Image taken from the Best Practices for Compressed Air Systems Handbook, 2nd Edition

Better Understand Your Blowoff Process with EXAIR’s FREE Efficiency Lab

panoramic view
The EXAIR Efficiency Lab

Many customers may not have the means to test the air consumption of their blowoff solutions. With compressed air being the most expensive utility in a manufacturing facility, it’s important to identify places where you can save money on your overall operating costs. EXAIR manufacturers a wide variety of products intended to help you reduce your compressed air usage. If you’re not able to accurately measure the consumption in your own shop, we invite you to send the products into EXAIR for testing. With EXAIR’s Award Winning Efficiency Lab, just simply contact an Application Engineer, box them up and send them to our warehouse in Cincinnati, Ohio.

EXAIR Efficiency Lab

Once we receive it, our engineers will complete some in-depth testing to determine the compressed air consumption, sound level, and force that your current solution provides. With this information, we’ll be able to compare it to an EXAIR Engineered Solution. This way we ensure that you receive the best, safest solution possible also capable of saving money through reduced air consumption and improved efficiency.  We’ll send you back a comprehensive report that’ll help you to make the best decision for your company.

I’ve been recently working with a customer that sent in one of the nozzles they’re using across all their CNC machines. They wanted us to test it out and see if we’re able to offer them something that could reduce their overall compressed air usage. The nozzle was one of the cheap plastic varieties and was attached to a commonly used modular hose. This type of modular hose is not designed for operating under high pressures. These hoses are more suitable for liquid coolant or air that is at or below atmospheric pressure.

IMG_7486
Inefficient and unsafe plastic nozzle

After testing, we found that at 80 psig the nozzle consumed 3.85 SCFM and produced a force of 1.92 oz. We also noticed that after 60 psig, the nozzle began to leak due to a poor seal where the nozzle met the brass hex. The EXAIR nozzle most suitable to replace this was the 1108SS. At just 2.5 SCFM at 80 psig, replacing the plastic nozzle with an engineered solution saves them 35% of their overall consumption for this blowoff. With close to 1000 of these nozzles in operation, that adds up quickly!!

In addition to increasing efficiency, replacing these nozzles also greatly increases overall worker safety. The sound level is reduced from 73 dBA to just 58 dBA and EXAIR’s nozzles also adhere to OSHA 1910.242(b). The plastic nozzles could be dead-ended, posing a hazard that can result in costly fines. These fines are assessed per infraction, so having multiple non-compliant nozzles can easily get very expensive if you’re subject to an unannounced visit by an OSHA inspector.

If you think you may have an opportunity to improve upon your existing blowoff methods, give us a call. We’ll be happy to take a closer look and have you send the product back to EXAIR for a quick trial in our Efficiency Lab. You’ll be glad you did!

Tyler Daniel
Application Engineer
E-mal: TylerDaniel@exair.com
Twitter: @EXAIR_TD

ROI – Return on Investment

Return on Investment (ROI) is a measure of the gain (preferably) or loss generated relative to the amount of money that was invested.  ROI is typically expressed as a percentage and is generally used for personal financial decisions, examining the profitability of a company, or comparing different investments.  It can also be used to evaluate a project or process improvement to decide whether spending money on a project makes sense.  The formula is shown below-

ROI

  • A negative ROI says the project would result in an overall loss of money
  • An ROI at zero is neither a loss or gain scenario
  • A positive ROI is a beneficial result, and the larger the value the greater the gain

Gain from investment could include many factors, such as energy savings, reduced scrap savings, cost per part due to increased throughput savings, and many more.  It is important to analyze the full impact and to truly understand all of the savings that can be realized.

Cost of investment also could have many factors, including the capital cost, installation costs, downtime cost for installation, and others.  The same care should be taken to fully capture the cost of the investment.

Example – installing a Super Air Nozzles (14 SCFM compressed air consumption) in place of 1/4″ open pipe (33 SCFM of air consumption consumption) .  Using the Cost Savings Calculator on the EXAIR website, model 1100 nozzle will save $1,710 in energy costs. The model 1100 nozzle costs $37, assuming a $5 compression fitting and $50 in labor to install, the result is a Cost of Investment of $92.00. The ROI calculation for Year 1 is-

ROI2

ROI = 1,759% – a very large and positive value.  Payback time is only 13 working days.

Armed with the knowledge of a high ROI, it should be easier to get projects approved and funded.  Not proceeding with the project costs more than implementing it.

If you have questions regarding ROI and need help in determining the gain and cost from invest values for a project that includes an EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

FREE TESTING!!!! EXAIR’s Award Winning Efficiency Lab Saves Air and Money

EXAIR’s Efficiency Lab is now the “award-winning Efficiency Lab”. Thank you to Environmental Protection Magazine for recognizing the value and importance of this EXAIR service.

epawinner2016_400x

 

I have blogged about this many times and we continue to help customers by using our free Efficiency Lab service that EXAIR provides to customers throughout the USA.  The EXAIR Efficiency Lab allows customers to send in their existing blow off device and we will test it for compressed air consumption, sound level, and force.  Ideally we try to take these measurements at the same operating pressure that is being supplied in the field so that we can compare it to an EXAIR product and offer the customer the best solution, the safest solution, and an engineered solution capable of saving them money through air savings and effectiveness.

Here is a recent example of  a product sent in by a customer concerned with compressed air consumption and safety of their people. The  hose they sent in was actually designed to be used with liquid coolants and was a very large consumer of compressed air.

A flexible blow off with .495" openings. Designed for liquid but used for compressed air. Enormous waste of air and a huge safety risk.
A flexible blow off with .495″ openings. Designed for liquid but used for compressed air. Enormous waste of air and a huge safety risk.

The hose shown above was being used at 40 psig inlet pressure.  The device is not OSHA compliant for dead end pressure, nor does it meet or exceed the OSHA standard for allowable noise level exposure.   The hose was utilizing 84.64 SCFM of compressed air and was giving off 100.1 dBA of sound.

OSHA Noise Level

As seen in the chart above, an employee is only permitted to work in the surrounding area for 2 hours a day when exposed to this noise level.   The amount of force that the nozzle gave off was far more than what was needed to blow chips and fines off the part.   The EXAIR solution was a model 1002-9230 – Safety air Nozzle w/ 30″ Stay Set Hose.

The EXAIR products were operated at line pressure of 80 psig which means they utilized 17 SCFM of compressed air and gave off a sound level of 80 dBA.  On top of saving over 67 SCFM per nozzle and reducing the noise level to below OSHA standard, the EXAIR engineered solution also meets or exceeds the OSHA standard for 30 psig dead end pressure.   In total this customer has replaced 8 of these inefficient lines and is saving 541 SCFM of compressed air each time they activate the part blowoff.

If you would like to find out more about the EXAIR Efficiency Lab, contact an Application Engineer.

We look forward to testing your blow off and being able to recommend a safe, efficient, engineered solution.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF